Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 586(19): 3117-21, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23166924

RESUMEN

When bound to ADP, ATP-dependent protease FtsH subunits adopt either an "open" or "closed" conformation. In the open state, the protease catalytic site is located in a narrow space covered by a lidlike helix. This space disappears in the closed form because the lid helix bends at Gly448. Here, we replaced Gly448 with various residues that stabilize helices. Most mutants retained low ATPase activity and bound to the substrate protein, but lost protease activity. However, a mutant proline substitution lost both activities. Our study shows that the conformational transition of the lid helix is essential for the function of FtsH.


Asunto(s)
Proteasas ATP-Dependientes/química , Proteasas ATP-Dependientes/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteasas ATP-Dependientes/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/genética
2.
FEMS Microbiol Lett ; 297(2): 217-24, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19552708

RESUMEN

There is an ongoing demand to improve the ATP-regenerating system for industrial ATP-driven bioprocesses because of the low efficiency of ATP regeneration. To address this issue, we investigated the efficiency of ATP regeneration in Escherichia coli using the Permeable Cell Assay. This assay identified 40 single-gene deletion strains that had over 150% higher total cellular ATP synthetic activity relative to the parental strain. Most of them also showed higher ATP-driven glutathione synthesis. The deleted genes of the identified strains that showed increased efficiency of ATP regeneration for glutathione production could be divided into the following four groups: (1) glycolytic pathway-related genes, (2) genes related to degradation of ATP or adenosine, (3) global regulatory genes, and (4) genes whose contribution to the ATP regeneration is unknown. Furthermore, the high glutathione productivity of DeltanlpD, the highest glutathione-producing mutant strain, was due to its reduced sensitivity to the externally added ATP for ATP regeneration. This study showed that the Permeable Cell Assay was useful for improving the ATP-regenerating activity of E. coli for practical applications in various ATP-driven bioprocesses, much as that of glutathione production.


Asunto(s)
Adenosina Trifosfato/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glutatión/biosíntesis , Mutación , Metabolismo Energético , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
Metab Eng ; 11(1): 1-7, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18718549

RESUMEN

Adenosine 5'-triphosphate (ATP) generation is an essential biological reaction for all living cells. Recently, we developed a Permeable Cell Assay for high-throughput measurement of cellular ATP synthetic activity, mainly resulting from glycolysis [Hara, K.Y., Mori, H., 2006. An efficient method for quantitative determination of cellular ATP synthetic activity. J. Biomol. Screen. 11, 310-317]. By using this method, we determined the cellular ATP synthetic activity in the stationary phase of a complete set of single-gene deletion strains of Escherichia coli. Their activities ranged from a minimum of 2% to a maximum of 445%, relative to parental strains. Deletions of metabolism-related genes frequently caused an increase in the rate of ATP synthetic activity, while activity was reduced by deletions of a variety of functional genes, including many poorly characterized genes. We also demonstrated that the deletion of the ptsG gene doubled ATP-driven glutathione synthesis and increased cellular ATP synthetic activity. Our study also indicated that it should be easy to obtain active strains for ATP synthesis from deletion strains. Overall, the data set of this study may be useful to improve E. coli strains for ATP-dependent industrial processes and, therefore, may be important for the design of so-called cell factories.


Asunto(s)
Adenosina Trifosfato/metabolismo , Escherichia coli K12/metabolismo , Genoma Bacteriano , Metabolismo Energético , Escherichia coli K12/genética , Glucólisis , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA