Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 1: 74, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271955

RESUMEN

The structures of metalloproteins that use redox-active metals for catalysis are usually exquisitely folded in a way that they are prearranged to accept their metal cofactors. Peptidylglycine α-hydroxylating monooxygenase (PHM) is a dicopper enzyme that catalyzes hydroxylation of the α-carbon of glycine-extended peptides for the formation of des-glycine amidated peptides. Here, we present the structures of apo-PHM and of mutants of one of the copper sites (H107A, H108A, and H172A) determined in the presence and absence of citrate. Together, these structures show that the absence of one copper changes the conformational landscape of PHM. In one of these structures, a large interdomain rearrangement brings residues from both copper sites to coordinate a single copper (closed conformation) indicating that full copper occupancy is necessary for locking the catalytically competent conformation (open). These data suggest that in addition to their required participation in catalysis, the redox-active metals play an important structural role.

2.
Inorg Chem ; 53(12): 6159-69, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24884152

RESUMEN

Nickel complexes of a series of ß-diketiminate ligands ((R)L(-), deprotonated form of 2-substituted N-[3-(phenylamino)allylidene]aniline derivatives (R)LH, R = Me, H, Br, CN, and NO2) have been synthesized and structurally characterized. One-electron oxidation of the neutral complexes [Ni(II)((R)L(-))2] by AgSbF6 or [Ru(III)(bpy)3](PF6)3 (bpy = 2,2'-bipyridine) gave the corresponding metastable cationic complexes, which exhibit an EPR spectrum due to a doublet species (S = 1/2) and a characteristic absorption band in near IR region ascribable to a ligand-to-ligand intervalence charge-transfer (LLIVCT) transition. DFT calculations have indicated that the divalent oxidation state of nickel ion (Ni(II)) is retained, whereas one of the ß-diketiminate ligands is oxidized to give formally a mixed-valence complex, [Ni(II)((R)L(-))((R)L(•))](+). Thus, the doublet spin state of the oxidized cationic complex can be explained by taking account of the antiferromagnetic interaction between the high-spin nickel(II) ion (S = 1) and the organic radical (S = 1/2) of supporting ligand. A single-crystal structure of one of the cationic complexes (R = H) has been successfully determined to show that both ligands in the cationic complex are structurally equivalent. On the basis of theoretical analysis of the LLIVCT band and DFT calculations as well as the crystal structure, the mixed-valence complexes have been assigned to Robin-Day class III species, where the radical spin is equally delocalized between the two ligands to give the cationic complex, which is best described as [Ni(II)((R)L(0.5•-))2](+). One-electron reduction of the neutral complexes with decamethylcobaltocene gave the anionic complexes when the ligand has the electron-withdrawing substituent (R = CN, NO2, Br). The generated anionic complexes exhibited EPR spectra due to a doublet species (S = 1/2) but showed no LLIVCT band in the near-IR region. Thus, the reduced complexes are best described as the d(9) nickel(I) complexes supported by two anionic ß-diketiminate ligands, [Ni(I)((R)L(-))2](-). This conclusion was also supported by DFT calculations. Substituent effects on the electronic structures of the three oxidation states (neutral, cationic, and anionic) of the complexes are systematically evaluated on the basis of DFT calculations.


Asunto(s)
Compuestos de Anilina/química , Complejos de Coordinación/química , Níquel/química , 2,2'-Dipiridil/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Modelos Moleculares , Oxidación-Reducción , Rutenio/química
3.
J Biol Inorg Chem ; 18(1): 19-26, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23053534

RESUMEN

The pro form of recombinant tyrosinase from Aspergillus oryzae (melB) shows no catalytic activity, but acid treatment (around pH 3.5) of protyrosinase activates it to induce tyrosinase activity. Circular dichroism spectra, gel filtration analysis, and colorimetric assay have indicated that acid treatment around pH 3.5 induced the disruption of the conformation of the C-terminal domain covering the enzyme active site. These structural changes induced by the acid treatment may open the entrance to the enzyme active site for substrate incorporation. To compare the mechanism of hydroxylation by the acid-treated tyrosinase with that by trypsin-treated tyrosinase, a detailed steady-state kinetic analysis of the phenolase activity was performed by monitoring the O(2)-consumption rate using a Clark-type oxygen electrode. The results clearly show that the phenolase activity (phenol hydroxylation) of the activated tyrosinase involves an electrophilic aromatic substitution mechanism as in the case of mushroom tyrosinase (Yamazaki and Itoh in J. Am. Chem. Soc. 125:13034-13035, 2003) and activated hemocyanin with urea (Morioka et al. in J. Am. Chem. Soc. 128:6788-6789, 2006).


Asunto(s)
Aspergillus oryzae/enzimología , Monofenol Monooxigenasa/metabolismo , Dominio Catalítico , Activación Enzimática , Concentración de Iones de Hidrógeno , Hidroxilación , Modelos Moleculares , Monofenol Monooxigenasa/química , Fenoles/metabolismo
4.
Chembiochem ; 13(2): 193-201, 2012 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-22213164

RESUMEN

The pro form of melB tyrosinase from the melB gene of Aspergillus oryzae was over-produced from E. coli and formed a homodimer that exhibited the spectral features of met-tyrosinase. In the presence of NH(2)OH (reductant), the proenzyme bound dioxygen to give a stable (µ-η(2):η(2) -peroxo)dicopper(II) species (oxy form), thus indicating that the pro form tyrosinase can function as an oxygen carrier or storage protein like hemocyanin. The pro form tyrosinase itself showed no catalytic activity toward external substrates, but proteolytic digestion with trypsin activated it to induce tyrosinase activity. Mass spectroscopy analyses, mutagenesis experiments, and colorimetry assays have demonstrated that the tryptic digestion induced cleavage of the C-terminal domain (Glu458-Ala616), although the dimeric structure of the enzyme was retained. The structural changes induced by proteolytic digestion might open the entrance to the enzyme active site for substrate incorporation.


Asunto(s)
Aspergillus oryzae/enzimología , Monofenol Monooxigenasa/metabolismo , Secuencia de Aminoácidos , Animales , Dimerización , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Moluscos/química , Moluscos/enzimología , Moluscos/genética , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/genética , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
J Inorg Biochem ; 105(2): 289-96, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21194630

RESUMEN

Heme oxygenase (HO) catalyses the degradation of heme to biliverdin, carbon monoxide (CO) and ferrous iron via three successive monooxygenase reactions, using electrons provided by NADPH-cytochrome P450 reductase (CPR) and oxygen molecules. For cleavage of the oxaporphyrin ring of ferrous α-verdoheme, an intermediate in the HO reaction, involvement of a verdoheme π-neutral radical has been proposed. To explore this hypothetical mechanism, we performed electrochemical reduction of ferrous α-verdoheme-rat HO-1 complex under anaerobic conditions. Upon binding of CO, an O(2) surrogate, the midpoint potential for one-electron reduction of the oxaporphyrin ring of ferrous α-verdoheme was increased from -0.465 to -0.392 V vs the normal hydrogen electrode. Because the latter potential is close to that of the semiquinone/reduced redox couple of FAD in CPR, the one-electron reduction of the oxaporphyrin ring of CO-bound verdoheme complexed with HO-1 is considered to be a thermodynamically likely process. Indeed the one-electron reduced species, [Fe(II)(verdoheme•)], was observed spectroscopically in the presence of CO in both NADPH/wild-type and FMN-depleted CPR systems under anaerobic conditions. Under physiological conditions, therefore, it is possible that O(2) initially binds to the ferrous iron of α-verdoheme in its complex with HO-1 and an electron is subsequently transferred from CPR, probably via FAD, to the oxaporphyrin ring.


Asunto(s)
Monóxido de Carbono/química , Compuestos Ferrosos/química , Hemo-Oxigenasa 1/química , Hemo/análogos & derivados , NADPH-Ferrihemoproteína Reductasa/química , Porfirinas/química , Anaerobiosis , Animales , Espectroscopía de Resonancia por Spin del Electrón , Hemo/química , Oxidación-Reducción , Ratas
6.
Biochem J ; 419(2): 339-45, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19154182

RESUMEN

HO (haem oxygenase) catalyses the degradation of haem to biliverdin, CO and ferrous iron via three successive oxygenation reactions, i.e. haem to alpha-hydroxyhaem, alpha-hydroxyhaem to alpha-verdohaem and alpha-verdohaem to ferric biliverdin-iron chelate. In the present study, we determined the crystal structure of ferrous alpha-verdohaem-rat HO-1 complex at 2.2 A (1 A=0.1 nm) resolution. The overall structure of the verdohaem complex was similar to that of the haem complex. Water or OH- was co-ordinated to the verdohaem iron as a distal ligand. A hydrogen-bond network consisting of water molecules and several amino acid residues was observed at the distal side of verdohaem. Such a hydrogen-bond network was conserved in the structures of rat HO-1 complexes with haem and with the ferric biliverdin-iron chelate. This hydrogen-bond network may act as a proton donor to form an activated oxygen intermediate, probably a ferric hydroperoxide species, in the degradation of alpha-verdohaem to ferric biliverdin-iron chelate similar to that seen in the first oxygenation step.


Asunto(s)
Cristalografía por Rayos X/métodos , Hemo-Oxigenasa 1/química , Hemo/análogos & derivados , Modelos Moleculares , Animales , Hemo/química , Enlace de Hidrógeno , Estructura Molecular , Unión Proteica , Estructura Terciaria de Proteína , Ratas
7.
Biochemistry ; 48(7): 1654-62, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19170548

RESUMEN

The peptide C-terminal amide group essential for the full biological activity of many peptide hormones is produced by consecutive actions of peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidylamidoglycolate lyase (PAL); PHM catalyzes the hydroxylation of C-terminal glycine, and PAL decomposes the peptidyl-alpha-hydroxyglycine to an amidated peptide and glyoxylate. PAL contains 1 mol of zinc, but its role, catalytic or structural, has not yet been clarified. In this study, we found that a series of transition metals, Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), and Cd(2+), catalyze the nonenzymatic decomposition of the hydroxyglycine intermediate in a concentration-dependent manner. The second-order rate constant of the metal catalysis increased with elevation of pH, indicating that the hydrated metal acts as a general base. Extensive removal of the enzyme-bound metals remarkably diminished the PAL activity; k(cat) of the metal-depleted enzyme retaining 0.1 mol of zinc decreased to 3.2 s(-1) from 25.7 s(-1) of the wild-type enzyme. Among a series of divalent metals tested, Zn(2+), Co(2+), and Cd(2+) could fully restore the PAL activity of the metal-depleted enzyme. Especially, Zn substitution reproduced the steady-state parameters of the wild-type enzyme. On the other hand, Co and Cd substitution largely altered the kinetic parameters; the k(cat) increased 3- and 5-fold and the K(m) for the substrate increased 2.5- and 4-fold, respectively. These observations support that the enzyme-bound zinc plays a catalytic role, rather than a structural role, in the PAL reaction through the action of zinc-bound water as a general base.


Asunto(s)
Amidas/metabolismo , Amidina-Liasas/metabolismo , Glicina/metabolismo , Zinc/fisiología , Biocatálisis
8.
Dalton Trans ; (44): 6250-6, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18985258

RESUMEN

Reaction of beta-diketiminate copper(II) complexes and Na2S2 resulted in formation of (mu-eta2:eta2-disulfido)dicopper(II) complexes (adduct formation) or beta-diketiminate copper(I) complexes (reduction of copper(II)) depending on the substituents of the supporting ligands. In the case of sterically less demanding ligands, adduct formation occurred to provide the (mu-eta2:eta2-disulfido)dicopper(II) complexes, whereas reduction of copper(II) took place to give the corresponding copper(I) complexes with sterically more demanding beta-diketiminate ligands. Spectroscopic examinations of the reactions at low temperature using UV-vis and ESR as well as kinetic analysis have suggested that a 1 : 1 adduct LCuII-S-SNa with an end-on binding mode is initially formed as a common intermediate, from which different reaction pathways exist depending on the steric environment of the metal-coordination sphere provided by the ligands. Thus, with the sterically less demanding ligands, rearrangement of the disulfide adduct from end-on to side-on followed by self-dimerisation occurs to give the (mu-eta2:eta2-disulfido)dicopper(II) complexes, whereas such an intramolecular rearrangement of the disulfide co-ligand does not take place with the sterically more demanding ligands. In this case, homolytic cleavage of the CuII-S bond occurs to give the reduced copper(I) product. The steric effects of the supporting ligands have been discussed on the basis of detailed analysis of the crystal structures of the copper(II) starting materials.


Asunto(s)
Cobre/química , Compuestos Organometálicos/química , Sulfuros/química , Cristalografía por Rayos X , Ligandos , Estereoisomerismo
9.
Biochemistry ; 47(27): 7108-15, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18553939

RESUMEN

Octopus vulgaris hemocyanin ( Ov-Hc) and one of its minimal functional units ( Ov-g) have been purified, and their spectroscopic features and monooxygenase (phenolase) activity have been examined in detail. The oxy forms of both Ov-Hc and Ov-g are stable in 0.5 M borate buffer (pH 9.0) even in the presence of a high concentration of urea at 25 degrees C; approximately 90 and approximately 75% of the (mu-eta (2):eta (2)-peroxo)dicopper(II) species of Ov-Hc and Ov-g, respectively, remained unchanged after argon (Ar) gas flushing of the sample solutions for 1 h. The catalytic activity of Ov-g in the oxygenation reaction (multiturnover reaction) of 4-methylphenol ( p-cresol) to 4-methyl-1,2-dihydroxybenzene (4-methylcatechol) was higher than that of Ov-Hc, and its catalytic activity was further accelerated by the addition of urea. Kinetic deuterium isotope effect analysis and Hammett analysis using a series of phenol derivatives under anaerobic conditions (single-turnover reaction) have indicated that the monooxygenation reaction of phenols to catechols by the peroxo species of oxyhemocyanin proceeds via electrophilic aromatic substitution mechanism as in the case of tyrosinase. The effect of urea on the redox functions of oxyhemocyanin is discussed on the basis of the spectroscopic analysis and reactivity studies.


Asunto(s)
Hemocianinas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Octopodiformes/enzimología , Aerobiosis , Anaerobiosis , Animales , Sitios de Unión , Catálisis , Catecoles/química , Catecoles/metabolismo , Dicroismo Circular , Hemocianinas/química , Oxigenasas de Función Mixta/química , Fenoles/química , Fenoles/metabolismo , Estructura Cuaternaria de Proteína , Especificidad por Sustrato , Factores de Tiempo
10.
J Inorg Biochem ; 100(5-6): 1118-27, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16584781

RESUMEN

The reaction of copper(II) complexes supported by a series of beta-diketiminate ligands ((R1,R2)L, [(Dipp)N-C(R(2))-C(R(1))-C(R(2))-N(Dipp)](-), Dipp=2,6-diisopropylphenyl; see ) and H(2)O(2) has been examined spectroscopically at a low temperature. The beta-diketiminatocopper(II) complexes with R(2)=H (no substituent on the beta-carbon) provided a copper-oxygen intermediate that exhibited the same spectroscopic features as those of the bis(mu-oxo)dicopper(III) complex generated by the reaction of corresponding beta-diketiminatocopper(I) complex and O(2). On the other hand, the beta-diketiminatocopper(II) complexes with methyl substituent on the beta-carbon (R(2)=Me) did not produce such an intermediate in the same reaction. The beta-diketiminatocopper(II) complexes carrying an electron-withdrawing substituent on the alpha-carbon (R(1)=NO(2) or CN) but no beta-substituent (R(2)=H) exhibited a high catalytic activity in the oxygenation reaction of alkanes with H(2)O(2). Mechanism of the catalytic oxygenation reaction as well as the substituent effects of the ligands on the copper(II)-H(2)O(2) reactivity is discussed.


Asunto(s)
Alcanos/química , Cobre/química , Peróxido de Hidrógeno/química , Modelos Moleculares , Oxigenasas/química , Catálisis , Hidroxilación , Cinética , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Espectrometría de Masa por Ionización de Electrospray , Espectrometría Raman
11.
Inorg Chem ; 44(9): 3010-2, 2005 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-15847404

RESUMEN

Reactions of Ag(I) and a series of beta-diketiminate ligands have been investigated to demonstrate that unique macrocyclic dinuclear and tetranuclear Ag(I)-complexes and a linear coordination polymer Ag(I)-complex as well as oxidative C-C coupling dimer products of the ligands were obtained depending on the substituents on the carbon framework of beta-diketiminate ligands.

12.
Inorg Chem ; 42(25): 8395-405, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14658893

RESUMEN

Substituent effects of beta-diketiminate ligands on the structure and physicochemical properties of the copper(II) complexes have been systematically investigated by using 3-iminopropenylamine derivatives R1LR3H, R3-N=CH-C(R1)=CH-NH-R3, where R1 is Me, H, CN, or NO2, and R3 is Ph, Mes (mesityl), Dep (2,6-diethylphenyl), Dipp (2,6-diisopropylphenyl), or Dtbp (3,5-di-tert-butylphenyl). When the ligands with R3=Ph or Dtbp were treated with CuII(OAc)2, bis(beta-diketiminate) copper(II) complexes exhibiting distorted tetrahedral geometries were obtained, the crystal structures of which were nearly the same as each other regardless of the alpha-substituent (R1); dihedral angles between the two beta-diketiminate coordination planes are 62.5 +/- 1.2 degrees, and the Cu-N bond lengths are 1.959 +/- 0.008 A. The distorted tetrahedral structures are maintained in solution, but the spectroscopic features, especially gII values of the ESR spectra and the d-d bands of the absorption spectra, as well as the electrochemical behaviors of the complexes, are significantly affected by the electronic nature of R1. The ligands with R3=Mes and Dep, on the other hand, gave di(mu-hydroxo)dicopper(II) complexes, and their crystal structures as well as spectroscopic and electrochemical features have also been explored. Furthermore, the ligand with the more sterically encumbered aromatic substituent (Dipp) provided a mononuclear four-coordinate square planar copper(II) complex supported by one beta-diketiminate ligand and one didentate acetate ion. Thus, the beta-diketiminate ligands with a variety of substituents (R1 and R3) have been explored to provide coordinatively unsaturated (four-coordinate) mononuclear and dinuclear copper(II) complexes with significantly different coordination geometry and properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA