Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 69(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38640915

RESUMEN

Objective. Beam hardening (BH) artifacts in computed tomography (CT) images originate from the polychromatic nature of x-ray photons. In a CT system with a bowtie filter, residual BH artifacts remain when polynomial fits are used. These artifacts lead to worse visuals, reduced contrast, and inaccurate CT numbers. This work proposes a pixel-by-pixel correction (PPC) method to reduce the residual BH artifacts caused by a bowtie filter.Approach. The energy spectrum for each pixel at the detector after the photons pass through the bowtie filter was calculated. Then, the spectrum was filtered through a series of water slabs with different thicknesses. The polychromatic projection corresponding to the thickness of the water slab for each detector pixel could be obtained. Next, we carried out a water slab experiment with a mono energyE= 69 keV to get the monochromatic projection. The polychromatic and monochromatic projections were then fitted with a 2nd-order polynomial. The proposed method was evaluated on digital phantoms in a virtual CT system and phantoms in a real CT machine.Main results. In the case of a virtual CT system, the standard deviation of the line profile was reduced by 23.8%, 37.3%, and 14.3%, respectively, in the water phantom with different shapes. The difference of the linear attenuation coefficients (LAC) in the central and peripheral areas of an image was reduced from 0.010 to 0.003cm-1and 0.007cm-1to 0 in the biological tissue phantom and human phantom, respectively. The method was also validated using CT projection data obtained from Activion16 (Canon Medical Systems, Japan). The difference in the LAC in the central and peripheral areas can be reduced by a factor of two.Significance. The proposed PPC method can successfully remove the cupping artifacts in both virtual and authentic CT images. The scanned object's shapes and materials do not affect the technique.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Humanos
2.
Phys Med ; 113: 102648, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37672845

RESUMEN

PURPOSE: The purpose of this study is to develop a virtual CBCT simulator with a head and neck (HN) human phantom library and to demonstrate the feasibility of elemental material decomposition (EMD) for quantitative CBCT imaging using this virtual simulator. METHODS: The library of 36 HN human phantoms were developed by extending the ICRP 110 adult phantoms based on human age, height, and weight statistics. To create the CBCT database for the library, a virtual CBCT simulator that simulated the direct and scattered X-ray on a flat panel detector using ray-tracing and deep-learning (DL) models was used. Gaussian distributed noise was also included on the flat panel detector, which was evaluated using a real CBCT system. The usefulness of the virtual CBCT system was demonstrated through the application of the developed DL-based EMD model for case involving virtual phantom and real patient. RESULTS: The virtual simulator could generate various virtual CBCT images based on the human phantom library, and the prediction of the EMD could be successfully performed by preparing the CBCT database from the proposed virtual system, even for a real patient. The CBCT image degradation owing to the scattered X-ray and the statistical noise affected the prediction accuracy, although these effects were minimal. Furthermore, the elemental distribution using the real CBCT image was also predictable. CONCLUSIONS: This study demonstrated the potential of using computer vision for medical data preparation and analysis, which could have important implications for improving patient outcomes, especially in adaptive radiation therapy.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Cabeza , Adulto , Humanos , Fantasmas de Imagen , Bases de Datos Factuales , Cuello
3.
Phys Med Biol ; 67(15)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35738247

RESUMEN

Objective.Material decomposition (MD) evaluates the elemental composition of human tissues and organs via computed tomography (CT) and is indispensable in correlating anatomical images with functional ones. A major issue in MD is inaccurate elemental information about the real human body. To overcome this problem, we developed a virtual CT system model, by which various reconstructed images can be generated based on ICRP110 human phantoms with information about six major elements (H, C, N, O, P, and Ca).Approach.We generated CT datasets labelled with accurate elemental information using the proposed generative CT model and trained a deep learning (DL)-based model to estimate the material distribution with the ICRP110 based human phantom as well as the digital Shepp-Logan phantom. The accuracy in quad-, dual-, and single-energy CT cases was investigated. The influence of beam-hardening artefacts, noise, and spectrum variations were analysed with testing datasets including elemental density and anatomical shape variations.Main results.The results indicated that this DL approach can realise precise MD, even with single-energy CT images. Moreover, noise, beam-hardening artefacts, and spectrum variations were shown to have minimal impact on the MD.Significance.Present results suggest that the difficulty to prepare a large CT database can be solved by introducing the virtual CT system and the proposed technique can be applied to clinical radiodiagnosis and radiotherapy.


Asunto(s)
Aprendizaje Profundo , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos
4.
Radiol Phys Technol ; 14(1): 113-121, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33428117

RESUMEN

The representation of computed tomography (CT) images using the Legendre polynomial (LPF) and spherical harmonics (SHF) functions was investigated. We selected 100 two-dimensional (2D) CT images of 10 lung cancer patients and 33 three-dimensional (3D) CT images of head and neck cancer patients. The reproducibility of these special functions was evaluated in terms of the normalized cross-correlation (NCC). For the 2D images, the NCC was 0.990 ± 0.002 (1sd) with an LPF of order 70, whereas for the 3D images, the NCC was 0.971 ± 0.004 (1sd) with an SHF of degree 70. The results showed that the LPF was more efficient than the Fourier series. As the thoracic and head areas are cylindrical and spherical, respectively, expansions with the LPF and SHF achieved an efficient representation of the human body. CT image representation with analytical functions can be potentially beneficial, such as in X-ray scattering estimation.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Cabeza , Humanos , Imagenología Tridimensional , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...