Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Orthop ; 45(4): 1097-1107, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33052447

RESUMEN

PURPOSE: We have recently developed an autologous bone graft substitute (ABGS) containing recombinant human bone morphogenetic protein 6 (rhBMP6) in autologous blood coagulum (ABC) that induces new bone formation in vivo. In order to improve biomechanical properties of the implant, compression resistant matrix (CRM) consisting of synthetic ceramics in the form of macroporous cylinders was added to the ABGS and we evaluated the biomechanical properties and the quantity and quality of bone formation following subcutaneous implantation in rats. METHODS: ABGS implants containing rhBMP6 in ABC with cylindrical ceramic blocks were implanted subcutaneously (n = 6 per time point) in the axillary region of Sprague-Dawley rats and removed at specified time points (7, 14, 21, 35, and 50 days). The quantity and quality of newly formed bone were analyzed by microCT, histology, and histomorphometric analyses. Biomechanical properties of ABGS formulations were determined by employing the cut test. RESULTS: MicroCT analyses revealed that ABGS implants induced formation of new bone within ceramic blocks. Histological analysis revealed that on day seven following implantation, the endochondral ossification occupied the peripheral part of implants. On days 14 and 21, newly formed bone was present both around the ceramic block and through the pores inside the block. On both days 35 and 50, cortical bone encircled the ceramic block while inside the block, bone covered the ceramic surface surrounding the pores. Within the osseous circles, there were few trabeculae and bone marrow containing adipocytes. ABGS containing cylindrical ceramic blocks were more rigid and had significantly increased stiffness compared with implants containing ceramic particles as CRM. CONCLUSION: We demonstrated that macroporous ceramic blocks in a form of cylinders are promising CRMs with good handling and enhanced biomechanical properties, supporting bone formation with ABGS containing rhBMP6 within autologous blood coagulum. Hence, ABGS containing ceramic blocks should be tested in preclinical models including diaphyseal segmental defects and non-unions in larger animals.


Asunto(s)
Proteína Morfogenética Ósea 6 , Sustitutos de Huesos , Animales , Cerámica , Humanos , Osteogénesis , Ratas , Ratas Sprague-Dawley
2.
Bone ; 141: 115654, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32977068

RESUMEN

Bone morphogenetic proteins (BMPs) are potent osteoinductive agents for bone tissue engineering. In order to define optimal properties of a novel autologous bone graft substitute (ABGS) containing rhBMP6 within the autologous blood coagulum (ABC) and ceramic particles as a compression resistant matrix (CRM), we explored the influence of their amount, chemical composition and particle size on the quantity and quality of bone formation in the rat subcutaneous assay. Tested ceramic particles included tricalcium phosphate (TCP), hydroxyapatite (HA) and biphasic calcium phosphate ceramic (BCP), containing TCP and HA in 80/20 ratio of different particle sizes (small 74-420 µm, medium 500-1700 µm and large 1000-4000 µm). RhBMP6 was either mixed with ABC or lyophilized on CRM prior to use with ABC. The experiments were terminated on day 21 and implants were analysed by microCT, histology and histomorphometry. Addition of CRM to ABGS containing rhBMP6 in ABC significantly increased the amount of newly formed bone and the optimal CRM/ABC ratio was found to be around 100 mg/500 µL. MicroCT analyses revealed that all tested ABGS formulations induced an extensive new bone formation and there were no differences between the two methods of rhBMP6 application as determined by the bone volume. However, the particle size played a significant role in the quantity and quality of newly formed bone. ABGS containing small particles induced new bone forming a dense trabecular network, cortical bone at the rim, bone and bone marrow in apposition to and in between ceramic particles. ABGS containing medium and large particles also resulted in new bone on the surface of particles as well as inside the pores. Histomorphometric analysis revealed that the ceramics particle size correlated with the quality of trabecular pattern of newly formed bone, bone/bone marrow ratio as observed in apposition and between particles, and the ratio between the cortical and trabecular bone. By employing rat subcutaneous implant assay, we showed for the first time that the size of synthetic ceramics particles affected the osteogenesis as defined by both the quantity and quality of ectopic bone.


Asunto(s)
Sustitutos de Huesos , Animales , Sustitutos de Huesos/farmacología , Huesos , Fosfatos de Calcio , Cerámica/farmacología , Osteogénesis , Tamaño de la Partícula , Ratas
3.
Cell Tissue Bank ; 9(4): 259-66, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18340551

RESUMEN

Lyophilized allograft musculoskeletal tissue is generally intended to be stored at "ambient" or "room" temperature, and usually is kept in climate controlled indoor storage areas. However, there is a question of what temperature extremes tissue may see, especially during transportation, in that these extremes may exceed even the limits of "ambient" conditions. Temperatures may become quite hot, but only for a few hours and only during daytime. Damage from high temperatures, if it occurs, is expected to be evident by damage to the collagen component of bone, soft tissue, and demineralized bone, as well as to the growth factors contained in demineralized bone. If damage is significant, then temperature monitoring requirements for lyophilized allograft tissue might be necessary. To answer this question, a literature review was carried out to look at the short-term temperature resistance of collagen and demineralized bone. Both collagen and the growth factors in demineralized bone show remarkable short term tolerance to elevated temperatures in the dry state, and it was concluded that temperature excursions of 50 degrees C or less, lasting for a few days or less, would not cause any significant deterioration. This means that temperature monitoring also should not be required.


Asunto(s)
Calor , Animales , Colágeno/metabolismo , Liofilización , Humanos , Especificidad de Órganos , Oxidación-Reducción , Trasplante Homólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...