Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37630470

RESUMEN

The toxic element arsenic (As) has become the major focus of global research owing to its harmful effects on human health, resulting in the establishment of several guidelines to prevent As contamination. The widespread industrial use of As has led to its accumulation in the environment, increasing the necessity to develop effective remediation technologies. Among various treatments, such as chemical, physical, and biological treatments, used to remediate As-contaminated environments, biological methods are the most economical and eco-friendly. Microbial oxidation of arsenite (As(III)) to arsenate (As(V)) is a primary detoxification strategy for As remediation as it reduces As toxicity and alters its mobility in the environment. Here, we evaluated the self-detoxification potential of microcosms isolated from Nakdong River water by investigating the autotrophic and heterotrophic oxidation of As(III) to As(V). Experimental data revealed that As(III) was oxidized to As(V) during the autotrophic and heterotrophic growth of river water microcosms. However, the rate of oxidation was significantly higher under heterotrophic conditions because of the higher cell growth and density in an organic-matter-rich environment compared to that under autotrophic conditions without the addition of external organic matter. At an As(III) concentration > 5 mM, autotrophic As(III) oxidation remained incomplete, even after an extended incubation time. This inhibition can be attributed to the toxic effect of the high contaminant concentration on bacterial growth and the acidification of the growth medium with the oxidation of As(III) to As(V). Furthermore, we isolated representative pure cultures from both heterotrophic- and autotrophic-enriched cultures. The new isolates revealed new members of As(III)-oxidizing bacteria in the diversified bacterial community. This study highlights the natural process of As attenuation within river systems, showing that microcosms in river water can detoxify As under both organic-matter-rich and -deficient conditions. Additionally, we isolated the bacterial strains HTAs10 and ATAs5 from the microcosm which can be further investigated for potential use in As remediation systems. Our findings provide insights into the microbial ecology of As(III) oxidation in river ecosystems and provide a foundation for further investigations into the application of these bacteria for bioremediation.

2.
J Environ Manage ; 223: 852-859, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29986334

RESUMEN

Mine wastes from tungsten mine which contain a high concentration of arsenic (As) may expose many environmental problems because As is very toxic. This study aimed to evaluate bioleaching efficiency of As and manganese (Mn) from tungsten mine wastes using the pure and mixed culture of Acidithiobacillus ferrooxidans and A. thiooxidans. The electrochemical effect of the electrode through externally applied voltage on bacterial growth and bioleaching efficiency was also clarified. The obtained results indicated that both the highest As extraction efficiency (96.7%) and the highest Mn extraction efficiency (100%) were obtained in the mixed culture. A. ferrooxidans played a more important role than A. thiooxidans in the extraction of As whereas A. thiooxidans was more significant than A. ferrooxidans in the extraction of Mn. Unexpectedly, the external voltage applied to the bioleaching did not enhance metal extraction rate but inhibited bacterial growth, resulting in a reverse effect on bioleaching efficiency. This could be due to the low electrical tolerance of bioleaching bacteria. However, this study asserted that As and Mn could be successfully removed from tungsten mine waste by the normal bioleaching using the mixed culture of A. ferrooxidans and A. thiooxidans.


Asunto(s)
Acidithiobacillus , Arsénico/química , Manganeso/química , Arsénico/aislamiento & purificación , Manganeso/aislamiento & purificación , Metales , Minería , Tungsteno , Administración de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA