Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Vaccines (Basel) ; 12(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38932326

RESUMEN

Japanese encephalitis virus (JEV), a flavivirus transmitted by mosquitoes, has caused epidemics and severe neurological diseases in Asian countries. In this study, we developed a cDNA infectious clone, pBAC JYJEV3, of the JEV genotype 3 strain (EF571853.1) using a bacterial artificial chromosome (BAC) vector. The constructed infectious clone was transfected into Vero cells, where it exhibited infectivity and induced cytopathic effects akin to those of the parent virus. Confocal microscopy confirmed the expression of the JEV envelope protein. Comparative analysis of growth kinetics revealed similar replication dynamics between the parental and recombinant viruses, with peak titers observed 72 h post-infection (hpi). Furthermore, plaque assays demonstrated comparable plaque sizes and morphologies between the viruses. Cryo-electron microscopy confirmed the production of recombinant virus particles with a morphology identical to that of the parent virus. Immunization studies in mice using inactivated parental and recombinant viruses revealed robust IgG responses, with neutralizing antibody production increasing over time. These results showcase the successful generation and characterization of a recombinant JEV3 virus and provide a platform for further investigations into JEV pathogenesis and vaccine development.

3.
Sci Rep ; 14(1): 7997, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580756

RESUMEN

Hepatocellular carcinoma (HCC) is characterized by high incidence and fatality rates worldwide. In our exploration of prognostic factors in HCC, the 26s proteasome subunit, non-ATPase 1 (PSMD1) protein emerged as a significant contributor, demonstrating its potential as a therapeutic target in this aggressive cancer. PSMD1 is a subunit of the 19S regulatory particle in the 26S proteasome complex; the 19S particle controls the deubiquitination of ubiquitinated proteins, which are then degraded by the proteolytic activity of the complex. Proteasome-targeting in cancer therapy has received significant attention because of its practical application as an established anticancer agent. We investigated whether PSMD1 plays a critical role in cancer owing to its prognostic significance. PSMD1 depletion induced cell cycle arrest in G2/M phase, DNA damage and apoptosis of cancer cells, irrespective of the p53 status. PSMD1 depletion-mediated cell death was accompanied by an increase in overall protein ubiquitination. These phenotypes occurred exclusively in cancer cells, with no effects observed in normal cells. These findings indicate that PSMD1 depletion-mediated ubiquitination of cellular proteins induces cell cycle arrest and eventual death in cancer cells, emphasizing PSMD1 as a potential therapeutic target in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptosis/genética , Carcinoma Hepatocelular/genética , Daño del ADN , Neoplasias Hepáticas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación
4.
J Mater Chem B ; 12(15): 3751-3763, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38532694

RESUMEN

In this study, a one-step immunoassay for porcine epidemic diarrhea virus (PEDV) based on Fv-antibodies and switching peptides was developed, and the assay results of PEDV were obtained by just mixing samples without any further reaction or washing steps. The Fv-antibodies with binding affinity to the spike protein of PEDV were screened from the Fv-antibody library using the receptor-binding domain (RBD) of the spike protein as a screening probe. Screened Fv-antibodies with binding affinities to the RBD antigen were expressed, and the binding constants (KD) were calculated to be 83-142 nM. The one-step immunoassay for the detection of PEDV was configured as a displacement immunoassay using a fluorescence-labeled switching peptide. The one-step immunoassay based on switching peptides was performed using PEDV, and the limit of detection (LOD) values for PEDV detection were estimated to be Ct = 39.7-36.4. Compared with the LOD value for a conventional lateral flow immunoassay (Ct = 33.0), the one-step immunoassay showed a remarkably improved LOD for the detection of PEDV. Finally, the interaction between the screened Fv-antibodies and the PEDV RBD was investigated using docking simulations and compared with the amino acid sequences of the receptors on host cells, such as aminopeptidase N (APN) and angiotensin-converting enzyme-2 (ACE-2).


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/metabolismo , Glicoproteína de la Espiga del Coronavirus , Inmunoensayo/métodos , Péptidos , Anticuerpos Antivirales
5.
Front Mol Neurosci ; 17: 1356453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450042

RESUMEN

Introduction: Pain that arises spontaneously is considered more clinically relevant than pain evoked by external stimuli. However, measuring spontaneous pain in animal models in preclinical studies is challenging due to methodological limitations. To address this issue, recently we developed a deep learning (DL) model to assess spontaneous pain using cellular calcium signals of the primary somatosensory cortex (S1) in awake head-fixed mice. However, DL operate like a "black box", where their decision-making process is not transparent and is difficult to understand, which is especially evident when our DL model classifies different states of pain based on cellular calcium signals. In this study, we introduce a novel machine learning (ML) model that utilizes features that were manually extracted from S1 calcium signals, including the dynamic changes in calcium levels and the cell-to-cell activity correlations. Method: We focused on observing neural activity patterns in the primary somatosensory cortex (S1) of mice using two-photon calcium imaging after injecting a calcium indicator (GCaMP6s) into the S1 cortex neurons. We extracted features related to the ratio of up and down-regulated cells in calcium activity and the correlation level of activity between cells as input data for the ML model. The ML model was validated using a Leave-One-Subject-Out Cross-Validation approach to distinguish between non-pain, pain, and drug-induced analgesic states. Results and discussion: The ML model was designed to classify data into three distinct categories: non-pain, pain, and drug-induced analgesic states. Its versatility was demonstrated by successfully classifying different states across various pain models, including inflammatory and neuropathic pain, as well as confirming its utility in identifying the analgesic effects of drugs like ketoprofen, morphine, and the efficacy of magnolin, a candidate analgesic compound. In conclusion, our ML model surpasses the limitations of previous DL approaches by leveraging manually extracted features. This not only clarifies the decision-making process of the ML model but also yields insights into neuronal activity patterns associated with pain, facilitating preclinical studies of analgesics with higher potential for clinical translation.

6.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176904

RESUMEN

NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.


Asunto(s)
Acetato de Desoxicorticosterona , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Ácido Glutámico/metabolismo , Núcleo Supraóptico/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología
7.
Sci Rep ; 13(1): 20245, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985842

RESUMEN

It has been suggested that stress responses induced by fasting have analgesic effects on nociception by elevating the levels of stress-related hormones, while there is limited understanding of pain control mechanisms. Here, we investigated whether acute or intermittent fasting alleviates formalin-induced pain in mice and whether spinal orexin A (OXA) plays a role in this process. 6, 12, or 24 h acute fasting (AF) and 12 or 24 h intermittent fasting (IF) decreased the second phase of pain after intraplantar formalin administration. There was no difference in walking time in the rota-rod test and distance traveld in the open field test in all groups. Plasma corticosterone level and immobility time in the forced swim test were increased after 12 h AF, but not after 12 h IF. 12 h AF and IF increased not only the activation of OXA neurons in the lateral hypothalamus but also the expression of OXA in the lateral hypothalamus and spinal cord. Blockade of spinal orexin 1 receptor with SB334867 restored formalin-induced pain and spinal c-Fos immunoreactivity that were decreased after 12 h IF. These results suggest that 12 h IF produces antinociceptive effects on formalin-induced pain not by corticosterone elevation but by OXA-mediated pathway.


Asunto(s)
Dolor Agudo , Ratones , Animales , Orexinas/farmacología , Formaldehído/toxicidad , Ayuno Intermitente , Corticosterona/farmacología , Analgésicos/farmacología , Médula Espinal/metabolismo , Receptores de Orexina/metabolismo
8.
Cell Biosci ; 13(1): 182, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777750

RESUMEN

BACKGROUND: Under conditions of hypoxia, cancer cells with hypoxia inducible factor-1α (HIF-1α) from heterogeneous tumor cells show greater aggression and progression in an effort to compensate for harsh environmental conditions. Extensive study on the stability of HIF-1α under conditions of acute hypoxia in cancer progression has been conducted, however, understanding of its involvement during the chronic phase is limited. METHODS: In this study, we investigated the effect of SIRT1 on HIF1 stability in a typical chronic hypoxic conditon that maintains cells for 24 h under hypoxia using Western blotting, co-IP, measurement of intracellular NAD + and NADH levels, semi-quantitative RT-PCR analysis, invasion assay, gene knockdown. RESULTS: Here we demonstrated that the high concentration of pyruvate in the medium, which can be easily overlooked, has an effect on the stability of HIF-1α. We also demonstrated that NADH functions as a signal for conveyance of HIF-1α degradation via the SIRT1 and VHL signaling pathway under conditions of chronic hypoxia, which in turn leads to attenuation of hypoxically strengthened invasion and angiogenic activities. A steep increase in the level of NADH occurs during chronic hypoxia, leading to upregulation of acetylation and degradation of HIF-1α via inactivation of SIRT1. Of particular interest, p300-mediated acetylation at lysine 709 of HIF-1α is recogonized by VHL, which leads to degradation of HIF-1α via ubiquitin/proteasome machinary under conditions of chronic hypoxia. In addition, we demonstrated that NADH-elevation-induced acetylation and subsequent degradation of HIF-1α was independent of proline hydroxylation. CONCLUSIONS: Our findings suggest a critical role of SIRT1 as a metabolic sensor in coordination of hypoxic status via regulation of HIF-1α stability. These results also demonstrate the involvement of VHL in degradation of HIF-1α through recognition of PHD-mediated hydroxylation in normoxia and p300-mediated HIF-1α acetylation in hypoxia.

9.
Viruses ; 15(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37766280

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an alpha-coronavirus causing acute diarrhea and high mortality in neonatal suckling piglets, resulting in huge economic losses for the global swine industry. The replication, assembly and cell egression of PEDV, an enveloped RNA virus, are mediated via altered intracellular trafficking. The underlying mechanisms of PEDV secretion are poorly understood. In this study, we found that the histone deacetylase (HDAC)-specific inhibitors, trichostatin A (TSA) and sodium butyrate (NaB), facilitate the secretion of infectious PEDV particles without interfering with its assembly. We found that PEDV N protein and its replicative intermediate dsRNA colocalize with coat protein complex II (COPII)-coated vesicles. We also showed that the colocalization of PEDV and COPII is enhanced by the HDAC-specific inhibitors. In addition, ultrastructural analysis revealed that the HDAC-specific inhibitors promote COPII-coated vesicles carrying PEDV virions and the secretion of COPII-coated vesicles. Consistently, HDAC-specific inhibitors-induced PEDV particle secretion was abolished by Sec24B knockdown, implying that the HDAC-specific inhibitors-mediated COPII-coated vesicles are required for PEDV secretion. Taken together, our findings provide initial evidence suggesting that PEDV virions can assemble in the endoplasmic reticulum (ER) and bud off from the ER in the COPII-coated vesicles. HDAC-specific inhibitors promote PEDV release by hijacking the COPII-coated vesicles.

10.
Vet Sci ; 10(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37235396

RESUMEN

Salmonella Enteritidis is a common foodborne pathogen transmitted through poultry products, which are its main carriers. Poultry are vaccinated against Salmonella Enteritidis in many countries, despite the absence of clinical symptoms, using commercially available live-attenuated vaccines. We previously constructed a highly attenuated temperature-sensitive (ts) Salmonella Enteritidis mutant, 2S-G10. In the present study, we describe the construction and attenuation-associated characteristics of 2S-G10. We infected 1-day-old chicks with 2S-G10 and the parental strains to evaluate the attenuation. One week after infection, 2S-G10 was not detected in the liver, cecum, or cecal tonsil tissues of the orally inoculated chicks, contrary to the parental strain. This indicates that 2S-G10 was highly attenuated when compared to the parental stain. In vitro experiments revealed the inability of 2S-G10 to grow at the normal body temperature of chickens and invade chicken liver epithelial cells. Moreover, single nucleotide polymorphism (SNP) analysis between the complete genome sequence of 2S-G10 and its parental strain revealed SNPs in bcsE, recG, rfaF, and pepD_1 genes, which are involved in epithelial cell invasion and persistence in host systems, growth, lipopolysaccharide core biosynthesis, and cellular survival under heat stress, respectively. These potential characteristics are consistent with the findings of in vitro experiments. Conclusively, chemical treatment-induced random genetic mutations highly attenuated 2S-G10, implying its potential to be developed as a novel live-attenuated vaccine against Salmonella Enteritidis.

11.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176148

RESUMEN

Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.


Asunto(s)
Neoplasias , Humanos , Ubiquitinación , Neoplasias/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Daño del ADN , Ubiquitina/metabolismo , Reparación del ADN
12.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G442-G451, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070746

RESUMEN

Alcohol-associated liver disease (ALD) is caused by excessive abuse of alcohol. One of the most representative causes of ALD is the action of acetaldehyde. Acetaldehyde is a toxic material produced when alcohol is metabolized through some enzymes, and it causes endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and tissue injury. In this study, we assessed the relationship between Progesterone receptor membrane component 1 (PGRMC1) and ALD because PGRMC1 is expressed in the ER and mitochondria in the liver. Using the chronic and binge alcohol feeding models, we assessed acetaldehyde level, liver damage, alcohol-degrading enzymes, and ER stress. Compared with wild-type (WT) mice ethanol-fed Pgrmc1 knockout (KO) mice had higher levels of alanine aminotransferase (ALT) and alcohol-degrading enzymes, and Pgrmc1 KO mice had high serum acetaldehyde and ER stress levels compared with WT mice with control and ethanol feeding. Loss of Pgrmc1 increased acetaldehyde production through increased expression of alcohol dehydrogenase and catalase, which led to increased ER stress and suggested that cell death was promoted. In conclusion, it has been proposed that the loss of PGRMC1 could promote ALD and cause liver damage in alcohol-abusing humans.NEW & NOTEWORTHY Loss of Pgrmc1 increased acetaldehyde production, and excess acetaldehyde consequently increased ER stress, which activates apoptosis. Since low expression of PGRMC1 is vulnerable to alcoholic liver damage, the loss of PGRMC1 expression may increase susceptibility to ALD.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hepatopatías Alcohólicas , Humanos , Ratones , Animales , Etanol/toxicidad , Etanol/metabolismo , Acetaldehído/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Estrés Oxidativo , Ratones Noqueados , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
13.
Graefes Arch Clin Exp Ophthalmol ; 261(4): 1127-1139, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36383278

RESUMEN

PURPOSE: To describe clinical manifestations and short-term prognosis of ocular motility disorders following coronavirus disease-2019 (COVID-19) vaccination. METHODS: Ocular motility disorders were diagnosed by clinical assessment, high-resolution magnetic resonance imaging, and laboratory testing. Clinical manifestations, short-term prognosis, and rate of complete recovery were analyzed. RESULTS: Sixty-three patients (37 males, 26 females) with a mean age of 61.6 ± 13.3 years (range, 22-81 years) were included in this study. Among 61 applicable patients with sufficient information regarding medical histories, 38 (62.3%) had one or more significant underlying past medical histories including vasculopathic risk factors. The interval between initial symptoms and vaccination was 8.6 ± 8.2 (range, 0-28) days. Forty-two (66.7%), 14 (22.2%), and 7 (11.1%) patients developed symptoms after the first, second, and third vaccinations, respectively. One case of internuclear ophthalmoplegia, 52 cases of cranial nerve palsy, two cases of myasthenia gravis, six cases of orbital diseases (such as myositis, thyroid eye disease, and IgG-related orbital myopathy), and two cases of comitant vertical strabismus with acute onset diplopia were found. Among 42 patients with follow-up data (duration: 62.1 ± 40.3 days), complete improvement, partial improvement, no improvement, and exacerbation were shown in 20, 15, 3, and 4 patients, respectively. CONCLUSION: This study provided various clinical features of ocular motility disorders following COVID-19 vaccination. The majority of cases had a mild clinical course while some cases showed a progressive nature. Close follow-up and further studies are needed to elucidate the underlying mechanisms and long-term prognosis.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Miastenia Gravis , Trastornos de la Motilidad Ocular , Estrabismo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , COVID-19/diagnóstico , COVID-19/epidemiología , Vacunas contra la COVID-19/efectos adversos , Trastornos de la Motilidad Ocular/diagnóstico , Trastornos de la Motilidad Ocular/etiología , Estrabismo/diagnóstico
15.
Vet Sci ; 9(12)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548851

RESUMEN

Variant porcine epidemic diarrhea virus (PEDV), belonging to the genogroup G2b, has higher pathogenicity and mortality than classical PEDV, belonging to the genogroup G1a. To understand the pathogenesis of the G2b PEDV, we examined the resistance of the G2b PEDV to interferon (IFN) and neutralizing antibodies, which are important for controlling PEDV infection. We found that the G2b PEDV showed higher resistance to IFN than G1a PEDV. The G1a PEDV could replicate in IFN-deficient Vero cells, but not in IFN-releasing porcine alveolar macrophages, whereas the G2b PEDV showed similar infectivity in both types of cells. We also found that G2b PEDV was not effectively blocked by neutralizing antibodies, unlike G1a PEDV, suggesting differences in the antigenicity of the two strains. These results provide an understanding of the occurrence of variant PEDV and its pathogenesis.

16.
Sci Rep ; 12(1): 18516, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323847

RESUMEN

Tunneling field-effect transistors (TFETs) are a promising candidate for the next generation of low-power devices, but their performance is very sensitive to traps near the tunneling junction. This study investigated the effects of high-pressure deuterium (D2) annealing and hydrogen (H2) annealing on the electrical performance and low-frequency noise (LFN) of a fully depleted silicon-on-insulator p-type TFET. Without high-pressure annealing, the typical noise power spectral density exhibited two Lorentzian spectra that were affected by fast and slow trap sites. With high-pressure annealing, the interface trap density related to fast trap sites was reduced. The passivation of traps near the tunneling junction indicates that high-pressure H2 and D2 annealing improves the electrical performance and LFN properties, and it may become a significant and necessary step for realizing integrated TFET technology in the future.

17.
Vaccines (Basel) ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36146484

RESUMEN

An ideal vaccine for controlling Salmonella infection in chicken flocks should be safe, inducing both humoral and cellular immunity. Live attenuated vaccines against Salmonella Enteritidis (S. Enteritidis) have been used as a potential control method of Salmonella infection in the poultry industry. However, live attenuated vaccines can persistently infect poultry for long periods and can become virulent revertant strains. In this study, we assessed the immune responses and protective efficacy of a temperature-sensitive attenuated S. Enteritidis mutant as a potential vaccine candidate. In addition, we evaluated the combined vaccine administration methods to maximize both humoral and cellular immune responses in chickens induced by the vaccine candidate. Immune responses and protective efficacy were compared between the Oral/IM group, vaccinated using one oral dose at four weeks old and a booster intramuscular dose at seven weeks old, and the IM/Oral group, vaccinated using one intramuscular dose at four weeks old and a booster oral dose at seven weeks old. The Oral/IM group showed stronger immune responses than those of the IM/Oral group. Spleens from the Oral/IM group showed a promising tendency of reduction of challenged Salmonella compared with those of other groups. Overall, the results indicated that the S. Enteritidis mutant strain is a promising live attenuated vaccine candidate with good efficacy.

18.
Viruses ; 14(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36016404

RESUMEN

DNA damage response (DDR) is an evolutionarily conserved mechanism by which eukaryotic cells sense DNA lesions caused by intrinsic and extrinsic stimuli, including virus infection. Although interactions between DNA viruses and DDR have been extensively studied, how RNA viruses, especially coronaviruses, regulate DDR remains unknown. A previous study showed that the porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the Coronaviridae family, induces DDR in infected cells. However, the underlying mechanism was unclear. This study showed that PEDV activates the ATM-Chk2 signaling, while inhibition of ATM or Chk2 dampens the early stage of PEDV infection. Additionally, we found that PEDV-activated ATM signaling correlates with intracellular ROS production. Interestingly, we showed that, unlike the typical γH2AX foci, PEDV infection leads to a unique γH2AX staining pattern, including phase I (nuclear ring staining), II (pan-nuclear staining), and III (co-staining with apoptotic bodies), which highly resembles the apoptosis process. Furthermore, we demonstrated that PEDV-induced H2AX phosphorylation depends on the activation of caspase-7 and caspase-activated DNAse (CAD), but not ATM-Chk2. Finally, we showed that the knockdown of H2AX attenuates PEDV replication. Taken together, we conclude that PEDV induces DDR through the ROS-ATM and caspase7-CAD-γH2AX signaling pathways to foster its early replication.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Infecciones por Coronavirus/veterinaria , Desoxirribonucleasas , Fosforilación , Virus de la Diarrea Epidémica Porcina/genética , Especies Reactivas de Oxígeno , Transducción de Señal , Porcinos
19.
Virol J ; 19(1): 112, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761402

RESUMEN

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans, with a case fatality rate of approximately 35%, thus posing a considerable threat to public health. The lack of approved vaccines or antivirals currently constitutes a barrier in controlling disease outbreaks and spread. METHODS: In this study, using a mammalian expression system, which is advantageous for maintaining correct protein glycosylation patterns, we constructed chimeric MERS-CoV virus-like particles (VLPs) and determined their immunogenicity and protective efficacy in mice. RESULTS: Western blot and cryo-electron microscopy analyses demonstrated that MERS-CoV VLPs were efficiently produced in cells co-transfected with MERS-CoV spike (S), envelope, membrane and murine hepatitis virus nucleocapsid genes. We examined their ability as a vaccine in a human dipeptidyl peptidase 4 knock-in C57BL/6 congenic mouse model. Mice immunized with MERS VLPs produced S-specific antibodies with virus neutralization activity. Furthermore, MERS-CoV VLP immunization provided complete protection against a lethal challenge with mouse-adapted MERS-CoV and improved virus clearance in the lung. CONCLUSIONS: Overall, these data demonstrate that MERS-CoV VLPs have excellent immunogenicity and represent a promising vaccine candidate.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Mamíferos , Ratones , Ratones Endogámicos C57BL , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de Partículas Similares a Virus/genética , Vacunas Virales/genética
20.
Viruses ; 14(5)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35632790

RESUMEN

In this study, we investigated the correlation between the mechanism involved in porcine epidemic diarrhea virus (PEDV) replication and autophagic flux. In this study, we found that as PEDV replicated, production of LC3-II was significantly induced up to 24 h post-infection (hpi). Interestingly, although there was significant production of LC3-II, greater p62 accumulation was simultaneously found. Pretreatment with rapamycin significantly induced PEDV replication, but autolysosome formation was reduced. These results were confirmed by the evaluation of ATG5/ATG12 and LAMP1/LAMP2. Taken together, we conclude that PEDV infection induces autophagosome formation but inhibits autolysosome formation during replication.


Asunto(s)
Autofagosomas/metabolismo , Virus de la Diarrea Epidémica Porcina , Animales , Autofagosomas/genética , Chlorocebus aethiops , Lisosomas/genética , Lisosomas/metabolismo , Macroautofagia , Virus de la Diarrea Epidémica Porcina/inmunología , Porcinos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA