Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012433

RESUMEN

The emergence of resistant bacteria takes place, endangering the effectiveness of antibiotics. A reason for antibiotic resistance is the presence of lactamases that catalyze the hydrolysis of ß-lactam antibiotics. An inhibitor of serine-ß-lactamases such as clavulanic acid binds to the active site of the enzymes, thus solving the resistance problem. A pressing issue, however, is that the reaction mechanism of metallo-ß-lactamases (MBLs) hydrolyzing ß-lactam antibiotics differs from that of serine-ß-lactamases due to the existence of zinc ions in the active site of MBLs. Thus, the development of potential inhibitors for MBLs remains urgent. Here, the ability to inhibit MBL from Bacillus anthracis (Bla2) was investigated in silico and in vitro using compounds possessing two hydroxamate functional groups such as 3-chloro-N-hydroxy-4-(7-(hydroxyamino)-7-oxoheptyl)benzamide (Compound 4) and N-hydroxy-4-(7-(hydroxyamino)-7-oxoheptyl)-3-methoxybenzamide (Compound 6). In silico docking and molecular dynamics simulations revealed that both Compounds 4 and 6 were coordinated with zinc ions in the active site, suggesting that the hydroxamate group attached to the aromatic ring of the compound plays a crucial role in the coordination to the zinc ions. In vitro kinetic analysis demonstrated that the mode of inhibitions for Compounds 4 and 6 were a competitive inhibition with Ki values of 6.4 ± 1.7 and 4.7 ± 1.4 kcal/mol, respectively. The agreement between in silico and in vitro investigations indicates that compounds containing dihyroxamate moieties may offer a new avenue to overcome antibiotic resistance to bacteria.


Asunto(s)
Bacillus anthracis , beta-Lactamasas , Antibacterianos/química , Antibacterianos/farmacología , Bacillus anthracis/metabolismo , Ácido Clavulánico , Ácidos Hidroxámicos/farmacología , Cinética , Serina , Zinc , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo
2.
J Enzyme Inhib Med Chem ; 31(sup4): 132-137, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27557855

RESUMEN

Metallo-ß-lactamases (MBLs) that catalyze hydrolysis of ß-lactam antibiotics are an emerging threat due to their rapid spread. A strain of the bacterium Bacillus anthracis has its ability to produce and secrete a MBL, referred to Bla2. To address this challenge, novel hydroxamic acid-containing compounds such as 3-(heptyloxy)-N-hydroxybenzamide (compound 4) and N-hydroxy-3-((6-(hydroxyamino)-6-oxohexyl)oxy)benzamide (compound 7) were synthesized. Kinetic analysis of microbial inhibition indicated that the both sides of hydroxamic acids containing compound 7 revealed a reversible, competitive inhibition with a Ki value of 0.18 ± 0.06 µM. The result has reflected that the both sides of dihydroxamic acids in a molecule play a crucial role in the binding affinity rather than monohydroxamic containing compound 4 which was unable to inhibit Bla2. In addition, in silico analysis suggested that compound 7 was coordinated with a zinc ion in the active site of enzyme. These observations suggest that the dihydroxamic acid-containing compound may be a promising drug candidate, and a further implication for designing new inhibitors of Bla2.


Asunto(s)
Bacillus anthracis/enzimología , Ácidos Hidroxámicos/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
3.
Bioorg Med Chem ; 15(7): 2617-23, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17296300

RESUMEN

The first committed step in lipid A biosynthesis is catalyzed by uridine diphosphate-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase (LpxC), a zinc-dependent deacetylase, and inhibitors of LpxC may be useful in the development of antibacterial agents targeting a broad spectrum of Gram-negative bacteria. Here, we report the design of amphipathic benzoic acid derivatives that bind in the hydrophobic tunnel in the active site of LpxC. The hydrophobic tunnel accounts for the specificity of LpxC toward substrates and substrate analogues bearing a 3-O-myristoyl substituent. Simple benzoic acid derivatives bearing an aliphatic 'tail' bind in the hydrophobic tunnel with micromolar affinity despite the lack of a glucosamine ring like that of the substrate. However, although these benzoic acid derivatives each contain a negatively charged carboxylate 'warhead' intended to coordinate to the active site zinc ion, the 2.25A resolution X-ray crystal structure of LpxC complexed with 3-(heptyloxy)benzoate reveals 'backward' binding in the hydrophobic tunnel, such that the benzoate moiety does not coordinate to zinc. Instead, it binds at the outer end of the hydrophobic tunnel. Interestingly, these ligands bind with affinities comparable to those measured for more complicated substrate analogue inhibitors containing glucosamine ring analogues and hydroxamate 'warheads' that coordinate to the active site zinc ion. We conclude that the intermolecular interactions in the hydrophobic tunnel dominate enzyme affinity in this series of benzoic acid derivatives.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Benzoatos/síntesis química , Benzoatos/farmacología , Benzoatos/metabolismo , Cristalografía por Rayos X , Hidrólisis , Indicadores y Reactivos , Ligandos , Modelos Moleculares , Unión Proteica , Especificidad por Sustrato
4.
J Am Chem Soc ; 126(33): 10278-84, 2004 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-15315440

RESUMEN

Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. Chiral L-amino acids bearing aldehyde side chains have been synthesized in which the electrophilic aldehyde C=O bond is isosteric with the C=N bond of L-arginine. This substitution is intended to facilitate nucleophilic attack by the metal-bridging hydroxide ion upon binding to the arginase active site. Syntheses of the amino acid aldehydes have been accomplished by reduction, oxidation, and Wittig-type reaction with a commercially available derivative of L-glutamic acid. Amino acid aldehydes exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, (S)-2-amino-7-oxoheptanoic acid, has been determined at 2.2 A resolution. In the enzyme-inhibitor complex, the inhibitor aldehyde moiety is hydrated to form the gem-diol: one hydroxyl group bridges the Mn(2+)(2) cluster and donates a hydrogen bond to D128, and the second hydroxyl group donates a hydrogen bond to E277. The binding mode of the neutral gem-diol may mimic the binding of the neutral tetrahedral intermediate and its flanking transition states in arginase catalysis.


Asunto(s)
Aldehídos/química , Aminoácidos/química , Arginasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Aldehídos/síntesis química , Aldehídos/metabolismo , Aldehídos/farmacología , Aminoácidos/síntesis química , Aminoácidos/metabolismo , Aminoácidos/farmacología , Arginasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Ácidos Heptanoicos/síntesis química , Ácidos Heptanoicos/química , Cinética , Modelos Moleculares
5.
J Am Chem Soc ; 125(43): 13052-7, 2003 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-14570477

RESUMEN

Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to form L-ornithine plus urea. Chiral L-amino acids bearing sulfonamide side chains have been synthesized in which the tetrahedral sulfonamide groups are designed to target bridging coordination interactions with the binuclear manganese cluster in the arginase active site. Syntheses of the amino acid sulfonamides have been accomplished by the amination of sulfonyl halide derivatives of (S)-(tert-butoxy)-[(tert-butoxycarbonyl)amino]oxoalkanoic acids. Amino acid sulfonamides with side chains comparable in length to that of L-arginine exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, S-(2-sulfonamidoethyl)-L-cysteine, has been determined at 2.8 A resolution. In the enzyme-inhibitor complex, the sulfonamide group displaces the metal-bridging hydroxide ion of the native enzyme and bridges the binuclear manganese cluster with an ionized NH(-) group. The binding mode of the sulfonamide inhibitor may mimic the binding of the tetrahedral intermediate and its flanking transition states in catalysis. It is notable that the ionized sulfonamide group is an excellent bridging ligand in this enzyme-inhibitor complex; accordingly, the sulfonamide functionality can be considered in the design of inhibitors targeting other binuclear metalloenzymes.


Asunto(s)
Aminoácidos/química , Arginasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Sulfonamidas/química , Aminoácidos/síntesis química , Aminoácidos/farmacología , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Cinética , Modelos Moleculares , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Resonancia por Plasmón de Superficie
6.
Immunology ; 110(1): 141-8, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12941151

RESUMEN

Using a high throughput gene microarray technology that detects approximately 22 000 genes, we found that arginase I was the most significantly up-regulated gene in the murine spinal cord during experimental autoimmune encephalomyelitis (EAE). By Northern blot and arginase enzyme assay, we detected high levels of arginase I mRNA and protein, respectively, in the spinal cord of EAE mice, but not in the spinal cord of normal mice or mice that had recovered from EAE. In vitro, both microglia and astrocytes produced arginase and nitric oxide synthase, two enzymes that are involved in arginine metabolism. To explore the roles of arginase in EAE, we injected the arginase inhibitor amino-6-boronohexanoic acid (ABH) into mice during the inductive and effector phases of the disease. Compared with mice that received vehicle control, mice treated with ABH developed milder EAE with delayed onset, reduced disease score and expedited recovery. Spleen mononuclear cells from ABH-treated mice produced more nitric oxide and secreted less interferon-gamma and tumour necrosis factor-alpha as compared to control mice. These results indicate that arginase plays important roles in autoimmune inflammation in the central nervous system.


Asunto(s)
Arginasa/inmunología , Encefalomielitis Autoinmune Experimental/enzimología , Médula Espinal/enzimología , Aminocaproatos/farmacología , Animales , Arginasa/antagonistas & inhibidores , Arginasa/genética , Arginasa/metabolismo , Northern Blotting , Compuestos de Boro/farmacología , Células Cultivadas , Citocinas/biosíntesis , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/biosíntesis , ARN Mensajero/genética , Médula Espinal/inmunología , Bazo/inmunología , Regulación hacia Arriba/inmunología
7.
Biochemistry ; 42(28): 8445-51, 2003 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-12859189

RESUMEN

Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. The X-ray crystal structure of a fully active, truncated form of human arginase II complexed with a boronic acid transition state analogue inhibitor has been determined at 2.7 A resolution. This structure is consistent with the hydrolysis of l-arginine through a metal-activated hydroxide mechanism. Given that human arginase II appears to play a role in regulating l-arginine bioavailability to NO synthase in human penile corpus cavernosum smooth muscle, the inhibition of human arginase II is a potential new strategy for the treatment of erectile dysfunction [Kim, N. N., Cox, J. D., Baggio, R. F., Emig, F. A., Mistry, S., Harper, S. L., Speicher, D. W., Morris, S. M., Ash, D. E., Traish, A. M., and Christianson, D. W. (2001) Biochemistry 40, 2678-2688]. Since NO synthase is found in human clitoral corpus cavernosum and vagina, we hypothesized that human arginase II is similarly present in these tissues and functions to regulate l-arginine bioavailability to NO synthase. Accordingly, hemodynamic studies conducted with a boronic acid arginase inhibitor in vivo are summarized, suggesting that the extrahepatic arginase plays a role in both male and female sexual arousal. Therefore, arginase II is a potential target for the treatment of male and female sexual arousal disorders.


Asunto(s)
Arginasa/química , Nivel de Alerta/fisiología , Hemodinámica/fisiología , Sexualidad/fisiología , Secuencia de Aminoácidos , Animales , Arginasa/antagonistas & inhibidores , Arginasa/genética , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X/métodos , Cartilla de ADN , Inhibidores Enzimáticos/farmacología , Femenino , Variación Genética , Humanos , Isoenzimas , Masculino , Modelos Moleculares , Reacción en Cadena de la Polimerasa , Estructura Secundaria de Proteína , Conejos , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Eliminación de Secuencia
8.
Proc Natl Acad Sci U S A ; 100(14): 8146-50, 2003 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12819349

RESUMEN

The outer leaflet of the outer membrane of the Gram-negative bacterium serves as a permeability barrier and is composed of lipopolysaccharide, also known as endotoxin. The membrane anchor of lipopolysaccharide is lipid A, the biosynthesis of which is essential for cell viability. The first committed step in lipid A biosynthesis is catalyzed by UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase (LpxC), a zinc-dependent deacetylase. Here we report the crystal structure of LpxC from Aquifex aeolicus, which reveals a new alpha+beta fold reflecting primordial gene duplication and fusion, as well as a new zinc-binding motif. The catalytic zinc ion resides at the base of an active-site cleft and adjacent to a hydrophobic tunnel occupied by a fatty acid. This tunnel accounts for the specificity of LpxC toward substrates and inhibitors bearing appropriately positioned 3-O-fatty acid substituents. Notably, simple inhibitors designed to target interactions in the hydrophobic tunnel bind with micromolar affinity, thereby representing a step toward the structure-based design of a potent, broad-spectrum antibacterial drug.


Asunto(s)
Amidohidrolasas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lípido A/biosíntesis , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes de Fusión/química , Relación Estructura-Actividad , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA