Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559267

RESUMEN

Sleep disturbances are prevalent in children with autism spectrum disorder (ASD) and have a major impact on the quality of life. Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is highly fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. Exposure to a novel environment further exacerbates sleep disturbances in 16p11.2 deletion mice by fragmenting NREMs and decreasing rapid eye movement sleep (REMs). In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine reverse sleep fragmentation. Furthermore, inhibiting LC-NE neurons restores memory. Rabies-mediated unbiased screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory regulatory brain regions in 16p11.2 deletion mice. Our findings demonstrate that heightened activity of LC-NE neurons and altered brain-wide connectivity underlies sleep fragmentation in 16p11.2 deletion mice and identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.

2.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38234815

RESUMEN

Sleep disturbances are prevalent in children with autism spectrum disorder (ASD) and have a major impact on the quality of life. Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is highly fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. Exposure to a novel environment further exacerbates sleep disturbances in 16p11.2 deletion mice by fragmenting NREMs and decreasing rapid eye movement sleep (REMs). In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine reverse sleep fragmentation. Furthermore, inhibiting LC-NE neurons restores memory. Rabies-mediated unbiased screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory regulatory brain regions in 16p11.2 deletion mice. Our findings demonstrate that heightened activity of LC-NE neurons and altered brain-wide connectivity underlies sleep fragmentation in 16p11.2 deletion mice and identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.

3.
J Infect Dis ; 228(Suppl 4): S291-S296, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788499

RESUMEN

BACKGROUND: Microbial-based cancer treatments are an emerging field, with multiple bacterial species evaluated in animal models and some advancing to clinical trials. Noninvasive bacteria-specific imaging approaches can potentially support the development and clinical translation of bacteria-based cancer treatments by assessing the tumor and off-target bacterial colonization. METHODS: 18F-Fluorodeoxysorbitol (18F-FDS) positron emission tomography (PET), a bacteria-specific imaging approach, was used to visualize an attenuated strain of Yersinia enterocolitica, currently in clinical trials as a microbial-based cancer treatment, in murine models of breast cancer. RESULTS: Y. enterocolitica demonstrated excellent 18F-FDS uptake in in vitro assays. Whole-body 18F-FDS PET demonstrated a significantly higher PET signal in tumors with Y. enterocolitica colonization compared to those not colonized, in murine models utilizing direct intratumor or intravenous administration of bacteria, which were confirmed using ex vivo gamma counting. Conversely, 18F-fluorodeoxyglucose (18F-FDG) PET signal was not different in Y. enterocolitica colonized versus uncolonized tumors. CONCLUSIONS: Given that PET is widely used for the management of cancer patients, 18F-FDS PET could be utilized as a complementary approach supporting the development and clinical translation of Y. enterocolitica-based tumor-targeting bacterial therapeutics.


Asunto(s)
Neoplasias , Tomografía de Emisión de Positrones , Humanos , Ratones , Animales , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Fluorodesoxiglucosa F18 , Radiofármacos
4.
Sci Rep ; 13(1): 14074, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640754

RESUMEN

There has been an increasing demand for robotic coil positioning during repetitive transcranial magnetic stimulation (rTMS) treatment. Accurate coil positioning is crucial because rTMS generally targets specific brain regions for both research and clinical application with other reasons such as safety, consistency and reliability and individual variablity. Some previous studies have employed industrial robots or co-robots and showed they can more precisely stimulate the target cortical regions than traditional manual methods. In this study, we not only developed a custom-TMS robot for better TMS coil placement but also analyzed the therapeutic effects on depression. Treatment effects were evaluated by measuring regional cerebral blood flow (rCBF) using single-photon emission computed tomography and depression severity before and after rTMS for the two positioning methods. The rTMS preparation time with our robotic coil placement was reduced by 53% compared with that of the manual method. The position and orientation errors were also significantly reduced from 11.17 mm and 4.06° to 0.94 mm and 0.11°, respectively, confirming the superiority of robotic positioning. The results from clinical and neuroimaging assessments indicated comparable improvements in depression severity and rCBF in the left dorsolateral prefrontal cortex between the robotic and manual rTMS groups. A questionnaire was used to determine the patients' feelings about the robotic system, including the safety and preparation time. A high safety score indicated good acceptability of robotic rTMS at the clinical site.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Estimulación Magnética Transcraneal , Proyectos Piloto , Depresión/terapia , Reproducibilidad de los Resultados
5.
Med Eng Phys ; 118: 104023, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37536829

RESUMEN

BACKGROUND: Ultrasonic neuromodulation (UNMOD) provides a non-invasive brain stimulation. However, the high-resolution region-specificity of UNMOD with a single element transducer combined with a mechanical positioning system could have limits due to the intrinsic positioning error from mechanical systems. OBJECTIVE/HYPOTHESIS: A phased array system could lead to highly selective neuromodulation with electronic control. METHODS: A specialized phased-array system with a robotic arm is implemented for a rhesus monkey model. Various primary motor cortex areas related to tail, hand, and mouth were stimulated with a 200 µm step size. The ultrasonic parameters were ISPTA of 840 mW/cm2, pulse repetition frequency of 100 Hz, and a 5% duty factor at 600 kHz. The induced movement were recorded and analyzed. RESULTS: Separate digits, mouth, and tongue motions were successfully induced by electronically controlling the focus. The identical body part movement could be induced when the focus was moved back to the identical primary motor cortex with electronic control. Accordingly, the reproducibility of UNMOD could be partially validated with rhesus monkey model. CONCLUSION: A phased-array system appears to have a potential for the non-invasive and region-selective neuromodulation method.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Reproducibilidad de los Resultados , Ultrasonografía , Transductores , Neurotransmisores
6.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199899

RESUMEN

In a 3D scanning system, using a camera and a line laser, it is critical to obtain the exact geometrical relationship between the camera and laser for precise 3D reconstruction. With existing depth cameras, it is difficult to scan a large object or multiple objects in a wide area because only a limited area can be scanned at a time. We developed a 3D scanning system with a rotating line laser and wide-angle camera for large-area reconstruction. To obtain 3D information of an object using a rotating line laser, we must be aware of the plane of the line laser with respect to the camera coordinates at every rotating angle. This is done by estimating the rotation axis during calibration and then by rotating the laser at a predefined angle. Therefore, accurate calibration is crucial for 3D reconstruction. In this study, we propose a calibration method to estimate the geometrical relationship between the rotation axis of the line laser and the camera. Using the proposed method, we could accurately estimate the center of a cone or cylinder shape generated while the line laser was rotating. A simulation study was conducted to evaluate the accuracy of the calibration. In the experiment, we compared the results of the 3D reconstruction using our system and a commercial depth camera. The results show that the precision of our system is approximately 65% higher for plane reconstruction, and the scanning quality is also much better than that of the depth camera.

7.
J Comp Neurol ; 529(7): 1308-1326, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32869318

RESUMEN

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder that is associated with repetitive head impacts. Neuropathologically, it is defined by the presence of perivascular hyperphosphorylated tau aggregates in cortical tissue (McKee et al., 2016, Acta Neuropathologica, 131, 75-86). Although many pathological and assumed clinical correlates of CTE have been well characterized, its effects on cortical dendritic arbors are still unknown. Here, we quantified dendrites and dendritic spines of supragranular pyramidal neurons in tissue from human frontal and occipital lobes, in 11 cases with (Mage = 79 ± 7 years) and 5 cases without (Mage = 76 ± 11 years) CTE. Tissue was stained with a modified rapid Golgi technique. Dendritic systems of 20 neurons per region in each brain (N = 640 neurons) were quantified using computer-assisted morphometry. One key finding was that CTE neurons exhibited increased variability and distributional changes across six of the eight dendritic system measures, presumably due to ongoing degeneration and compensatory reorganization of dendritic systems. However, despite heightened variation among CTE neurons, CTE cases exhibited lower mean values than Control cases in seven of the eight dendritic system measures. These dendritic alterations may represent a new pathological marker of CTE, and further examination of dendritic changes could contribute to both mechanistic and functional understandings of the disease.


Asunto(s)
Encefalopatía Traumática Crónica/patología , Dendritas/patología , Anciano , Anciano de 80 o más Años , Humanos , Masculino
8.
Biomacromolecules ; 21(2): 892-902, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31895978

RESUMEN

Here, we report the striking properties such as high stretchability, self-healing, and adhesiveness of an amphiphilic copolymeric hydrogel (poly(acrylic acid)-poly(methyl methacrylate) (PAA-PMMA) gel) synthesized from two immiscible monomers-acrylic acid (AA) and methyl methacrylate (MMA)-through a simple free radical polymerization in an aqueous medium. The developed hydrogel, with a specific molar ratio of MMA and AA, is self-healable, which is attributed to the hydrophobic interaction arising from methyl groups of PMMA, as well as the breakdown and reformation of sacrificial noncovalent cross-linking through the weak hydrogen bonds between the carboxylic acid groups of PAA and methoxy groups of PMMA. The energy dissipation values in the hysteresis test signify the excellent self-recoverability of the hydrogel. The developed hydrogel showed adhesive behavior to the surfaces of polystyrene, glass, wood, metal, stone, ceramics, pork skin, and human skin. The physical and mechanical properties of the PAA-PMMA gel were fine-tuned through changes in the MMA/AA ratio and pH. Moreover, the PAA-PMMA hydrogel can serve as a template for calcium phosphate mineralization to yield a hydrogel composite, which improved MC3T3 cell adhesion and proliferation. Overall, we propose that depending on synthesis parameters and other scenarios, the synthesized PAA-PMMA hydrogel could potentially be employed in varying biomedical and industrial applications.


Asunto(s)
Adhesivos/química , Proliferación Celular/fisiología , Desarrollo de Medicamentos/métodos , Hidrogeles/química , Polímeros/química , Tensoactivos/química , Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Adhesivos/metabolismo , Animales , Cloruro de Calcio/química , Cloruro de Calcio/metabolismo , Línea Celular , Hidrogeles/metabolismo , Ratones , Fosfatos/química , Fosfatos/metabolismo , Polimerizacion , Polímeros/metabolismo , Polimetil Metacrilato/química , Polimetil Metacrilato/metabolismo , Compuestos de Potasio/química , Compuestos de Potasio/metabolismo , Piel/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Tensoactivos/metabolismo , Porcinos
9.
Am J Cancer Res ; 9(8): 1664-1681, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497349

RESUMEN

Cancer stem cells (CSCs) are innately resistant to standard therapies, which positions CSCs in the focus of anti-cancer research. In this study, we investigated the potential inhibitory effect of tannic acid (TA) on CSCs. Our data demonstrated that TA (10 µM), at the concentration not inhibiting the proliferation of normal mammary cells (MCF10A), inhibited the formation and growth of mammosphere in MCF7, T47D, MDA-MB-231 cells shown as a decrease in mammosphere formation efficiency (MFE), cell number, diameter of mammosphere, and ALDH1 activity. NF-κB pathway was activated in the mammosphere indicated by an up-regulation of p65, a degradation of IκBα, and an increased IL-6. The inhibition of NF-κB pathway via gene silencing of p65 (sip65), NF-κB inhibitor (PDTC), or IKK inhibitor (Bay11-7082) alleviated MFE. Other CSCs markers such as an increase in ALDH1 and CD44high/CD24low ratio were ameliorated by sip65. TA also alleviated TGFß-induced EMT, increase in MFE, and NF-κB activation. In murine xenograft model, TA reduced tumor volume which was associated with a decrease in CD44high/CD24low expression and IKK phosphorylation. These results suggest that TA negatively regulates CSCs by inhibiting NF-κB activation and thereby prevents cancer cells from undergoing EMT and CSCs formation, and may thus be a promising therapy targeting CSCs.

10.
Radiother Oncol ; 138: 9-16, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31136962

RESUMEN

OBJECTIVE: Hepatocyte growth factor (HGF) and its receptor MET are expressed in the salivary glands during developmental stages and tumor formation; however, the function of HGF in injured salivary gland tissues remains unclear. The present study investigated the role of HGF in protecting the salivary glands against radiation-induced injury using an organotypic culture method. MATERIALS AND METHODS: Acinar-like organoids were formed by means of a three-dimensional (3D) human parotid tissue-derived spheroids (hPTS) culture method. Radioprotective effects of HGF on irradiated hPTS and signaling pathways on radioprotection were investigated. RESULTS: We detected MET expression in hPTS grown in a 3D culture. Treatment of irradiated hPTS with recombinant human HGF (rhHGF) restored salivary marker expression and secretory function of hPTS. Changes in the phosphorylation levels of apoptosis-related proteins through HGF-MET axis inhibited radiation-induced apoptosis. Treatment with PHA665752, a MET inhibitor, blocked MET-PI3K-AKT pathway, increased apoptosis, and suppressed the radioprotective effect of rhHGF against IR-induced damage of hPTS. CONCLUSIONS: These results suggest that HGF is a key effector of radioprotection and that HGF-MET-PI3K-AKT axis is involved in protecting the salivary glands from radiation-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Proteínas Proto-Oncogénicas c-met/fisiología , Traumatismos por Radiación/prevención & control , Glándulas Salivales/efectos de la radiación , Humanos , Indoles/farmacología , Sulfonas/farmacología
11.
Cancer Sci ; 110(2): 662-673, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30485589

RESUMEN

Cisplatin is a well-known anticancer drug used to treat various cancers. However, development of cisplatin resistance has hindered the efficiency of this drug in cancer treatment. Development of chemoresistance is known to involve many signaling pathways. Recent attention has focused on microRNAs (miRNAs) as potentially important upstream regulators in the development of chemoresistance. CD44 is one of the gastric cancer stem cell markers and plays a role in regulating self-renewal, tumor initiation, metastasis and chemoresistance. The purpose of the present study was to examine the mechanism of miRNA-mediated chemoresistance to cisplatin in CD44-positive gastric cancer stem cells. We sorted gastric cancer cells according to level of CD44 expression by FACS and analyzed their miRNA expression profiles by microarray analysis. We found that miR-193a-3p was significantly upregulated in CD44(+) cells compared with CD44(-) cells. Moreover, SRSF2 of miR-193a-3p target gene was downregulated in CD44(+) cells. We studied the modulation of Bcl-X and caspase 9 mRNA splicing by SRSF2 and found that more pro-apoptotic variants of these genes were generated. We also found that downstream anti-apoptotic genes such as Bcl-2 were upregulated, whereas pro-apoptotic genes such as Bax and cytochrome C were downregulated in CD44(+) cells compared to CD44(-) cells. In addition, we found that an elevated level of miR-193a-3p triggered the development of cisplatin resistance in CD44(+) cells. Inhibition of miR-193a-3p in CD44(+) cells increased SRSF2 expression and also altered the levels of multiple apoptotic genes. Furthermore, inhibition of miR-193a-3p reduced cell viability and increased the number of apoptotic cells. Therefore, miR-193a-3p may be implicated in the development of cisplatin resistance through regulation of the mitochondrial apoptosis pathway. miR-193a-3p could be a promising target for cancer therapy in cisplatin-resistant gastric cancer.


Asunto(s)
Cisplatino/farmacología , Receptores de Hialuranos/genética , MicroARNs/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Regulación hacia Arriba/genética , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factores de Empalme Serina-Arginina/genética , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos
12.
Biochem Biophys Res Commun ; 508(2): 430-439, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30503340

RESUMEN

An organoid is a complex, multi-cell three-dimensional (3D) structure that contains tissue-specific cells. Epithelial stem cells, which are marked by leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), have the potential for self-renewal and expansion as organoids. However, in the case of intestinal organoids from Lgr5-EGFP-IRES-CreERT2 transgenic mice, in vitro expansion of the Lgr5 expression is limited in a culture condition supplemented with essential proteins, such as epidermal growth factor (E), noggin (N), and R-spondin 1 (R). In this study, we hypothesized that self-renewal of Lgr5+ stem cells in a 3D culture system can be stimulated by defined compounds (CHIR99021, Valproic acid, Y-27632, and A83-01). Our results demonstrated that dissociated single cells from organoids were organized into a 3D structure in the four compounds containing the ENR culture medium in a 3D and two-dimensional (2D) culture system. Moreover, the Lgr5 expression level of organoids from the ENR- and compound-containing media increased. Furthermore, the conversion of cultured Lgr5+ stem cells from 2D to 3D was confirmed. Therefore, defined compounds promote the expansion of Lgr5+ stem cells in organoids.


Asunto(s)
Organoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/metabolismo , Amidas/farmacología , Animales , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Autorrenovación de las Células/fisiología , Medio de Cultivo Libre de Suero , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Ratones Transgénicos , Organoides/citología , Organoides/crecimiento & desarrollo , Pirazoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Tiosemicarbazonas/farmacología , Ácido Valproico/farmacología
13.
ACS Biomater Sci Eng ; 4(12): 4311-4320, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30591951

RESUMEN

The self-organizing properties of stem cells have been exploited to generate organoids, organ-specific, cell-containing, three-dimensional (3D) structures. The present study aimed to introduce a novel bioengineering technique for driving the effective organization of adult tissue stem cells via niche-independent 3D microwell culture. Microwells were fabricated by photopatterning poly(ethylene glycol) hydrogel in the presence of an electrospun polycaprolactone nanofibrous scaffold. Human single clonal salivary gland stem cells (SGSCs) were cultured in nanofibrous microwells through two simple steps, priming and differentiation. Before the induction of 3D organization, single clonal SGSCs were preconditioned to aggregate to form 3D spheroids in different matrices, such as Matrigel, floating dish, and microwells. Expression of salivary stem cell markers and pluripotency markers was greater in 3D spheroid cultures than in 2D plastic culture. Lobular structures were organized by changing media, and those in microwells exhibited higher salivary acinar, ductal, and tight junction marker levels and decreased stem-cell marker levels relative to other 3D cultures. Furthermore, higher α-amylase secretion and intracellular calcium levels were observed in the presence of adrenergic or cholinergic agonists, respectively, along with an increased intracellular pH, suggesting more functional salivary organoid formation. These microwell-driven organoids also engrafted successfully into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Our results showed that microwell-cultured SGSCs organize into salivary structures and that this biomimetic 3D culture technique can promote effective generation of niche-independent single stem-cell-based 3D organoids.

14.
Ann Rehabil Med ; 42(2): 270-276, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29765880

RESUMEN

OBJECTIVE: To identify the pressure relieving effect of adding a pelvic well pad, a firm pad that is cut in the ischial area, to a wheelchair cushion on the ischium. METHODS: Medical records of 77 individuals with SCI, who underwent interface pressure mapping of the buttock-thigh area, were retrospectively reviewed. The pelvic well pad is a 2.5-cm thick firm pad and has a cut in the ischial area. Expecting additional pressure relief, it can be inserted under a wheelchair cushion. Subjects underwent interface pressure mapping in the subject's wheelchair utilizing the subject's pre-existing pressure relieving cushion and subsequently on a combination of a pelvic well pad and the cushion. The average pressure, peak pressure, and contact area of the buttock-thigh were evaluated. RESULTS: Adding a pelvic well pad, under the pressure relieving cushion, resulted in a decrease in the average and peak pressures and increase in the contact area of the buttock-thigh area when compared with applying only pressure relieving cushions (p<0.05). The mean of the average pressure decreased from 46.10±10.26 to 44.09±9.92 mmHg and peak pressure decreased from 155.03±48.02 to 131.42±45.86 mmHg when adding a pelvic well pad. The mean of the contact area increased from 1,136.44±262.46 to 1,216.99±255.29 cm2. CONCLUSION: When a pelvic well pad was applied, in addition to a pre-existing pressure relieving cushion, the average and peak pressures of the buttock-thigh area decreased and the contact area increased. These results suggest that adding a pelvic well pad to wheelchair cushion may be effective in preventing a pressure ulcer of the buttock area.

15.
Stem Cells ; 36(7): 1020-1032, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29569790

RESUMEN

To explore the effects and mechanisms of paracrine factors secreted from human adipose mesenchymal stem cell (hAdMSCs) that are activated by hypoxia on radioprotection against irradiation-induced salivary hypofunction in subjects undergoing radiotherapy for head and neck cancers. An organotypic spheroid coculture model to mimic irradiation (IR)-induced salivary hypofunction was set up for in vitro experiments. Human parotid gland epithelial cells were organized to form three-dimensional (3D) acinus-like spheroids on growth factor reduced -Matrigel. Cellular, structural, and functional damage following IR were examined after cells were cocultured with hAdMSCs preconditioned with either normoxia (hAdMSCNMX ) or hypoxia (hAdMSCHPX ). A key paracrine factor secreted by hAdMSCsHPX was identified by high-throughput microarray-based enzyme-linked immunosorbent assay. Molecular mechanisms and signaling pathways on radioprotection were explored. Therapeutic effects of hAdMSCsHPX were evaluated after in vivo transplant into mice with IR-induced salivary hypofunction. In our 3D coculture experiment, hAdMSCsHPX significantly enhanced radioresistance of spheroidal human parotid epithelial cells, and led to greater preservation of salivary epithelial integrity and acinar secretory function relative to hAdMSCsNMX . Coculture with hAdMSCsHPX promoted FGFR expression and suppressed FGFR diminished antiapoptotic activity of hAdMSCsHPX . Among FGFR-binding secreted factors, we found that fibroblast growth factor 10 (FGF10) contributed to therapeutic effects of hAdMSCsHPX by enhancing antiapoptotic effect, which was dependent on FGFR-PI3K signaling. An in vivo transplant of hAdMSCsHPX into irradiated salivary glands of mice reversed IR-induced salivary hypofunction where hAdMSC-released FGF10 contributed to tissue remodeling. Our results suggest that hAdMSCsHPX protect salivary glands from IR-induced apoptosis and preserve acinar structure and functions by activation of FGFR-PI3K signaling via actions of hAdMSC-secreted factors, including FGF10. Stem Cells 2018;36:1020-1032.


Asunto(s)
Factor 10 de Crecimiento de Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Traumatismos Experimentales por Radiación/fisiopatología , Glándulas Salivales/efectos de la radiación , Animales , Hipoxia de la Célula , Células Cultivadas , Femenino , Humanos , Ratones , Glándulas Salivales/citología , Transfección
16.
Stem Cell Res Ther ; 9(1): 74, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29566770

RESUMEN

BACKGROUND: Three-dimensional (3D) cultures recapitulate the microenvironment of tissue-resident stem cells and enable them to modulate their properties. We determined whether salivary gland-resident stem cells (SGSCs) are primed by a 3D spheroid culture prior to treating irradiation-induced salivary hypofunction using in-vitro coculture and in-vivo transplant models. METHODS: 3D spheroid-derived SGSCs (SGSCs3D) were obtained from 3D culture in microwells consisting of a nanofiber bottom and cell-repellent hydrogel walls, and were examined for salivary stem or epithelial gene/protein expression, differentiation potential, and paracrine secretory function compared with monolayer-cultured SGSCs (SGSCs2D) in vitro and in vivo. RESULTS: SGSCs3D expressed increased salivary stem cell markers (LGR5 and THY1) and pluripotency markers (POU5F1 and NANOG) compared with SGSCs2D. Also, SGSCs3D exhibited enhanced potential to differentiate into salivary epithelial cells upon differentiation induction and increased paracrine secretion as compared to SGSCs2D. Wnt signaling was activated by 3D spheroid formation in the microwells and suppression of the Wnt/ß-catenin pathway led to reduced stemness of SGSCs3D. Enhanced radioprotective properties of SGSCs3D against radiation-induced salivary hypofunction was confirmed by an organotypic 3D coculture and in-vivo transplantation experiments. CONCLUSION: The 3D spheroid culture of SGSCs in nanofibrous microwells promotes stem cell properties via activation of Wnt signaling. This may contribute to SGSC priming prior to regenerative therapy to restore salivary hypofunction after radiotherapy.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Nanoestructuras/química , Cultivo Primario de Células/métodos , Enfermedades de las Glándulas Salivales/terapia , Glándulas Salivales/citología , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular , Células Cultivadas , Femenino , Humanos , Hidrogeles/química , Ratones , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Traumatismos Experimentales por Radiación/terapia , Glándulas Salivales/lesiones , Glándulas Salivales/efectos de la radiación , Esferoides Celulares/citología , Andamios del Tejido/química
17.
J Tissue Eng Regen Med ; 12(2): e695-e706, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27860388

RESUMEN

The present study was conducted to introduce the use of a delivery carrier for local transplantation of human adipose tissue-derived mesenchymal stem cells (AdMSCs) into the salivary gland (SG) and analyse its ability to enhance radioprotection of AdMSCs against irradiation (IR)-induced damage. An injectable porcine small intestinal submucosa (SIS) matrix was used as a cell delivery carrier, and human AdMSCs were contained within SIS hydrogel (AdMSC/SIS). After local injection into SGs of mice following local IR, morphological and functional changes were evaluated in the sham, vehicle [phosphate-buffered saline (PBS)], SIS, AdMSC and AdMSC/SIS groups. Local transplantation of AdMSC resulted in less fibrosis, regardless of the use of a carrier, but the AdMSC/SIS group showed more mucin-producing acini relative to those in the PBS group. Functional restoration of salivation capacity and salivary protein synthesis was achieved in AdMSC and AdMSC/SIS groups, with a greater tendency being observed in the AdMSC/SIS group. AdMSC treatment resulted in tissue remodelling with a greater number of salivary epithelial cells (AQP-5), SG progenitor cells (c-Kit), endothelial cells (CD31) and myoepithelial cells (α-SMA), among which endothelial and myoepithelial cells significantly increased in the AdMSC/SIS group relative to the AdMSC group. AdMSC treatment alleviated IR-induced cell death, and the anti-apoptotic and anti-oxidative effects of AdMSC were enhanced in the AdMSC/SIS group relative to the AdMSC group. These results suggest local transplantation of AdMSC improves tissue remodelling following radiation damage in SG tissue, and that use of a carrier enhances the protective effects of AdMSC-mediated cellular protection against IR via paracrine secretion. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Tejido Adiposo/citología , Inyecciones , Células Madre Mesenquimatosas/citología , Modelos Biológicos , Glándulas Salivales/patología , Glándulas Salivales/efectos de la radiación , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Femenino , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Mucosa Intestinal/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Glándulas Salivales/efectos de los fármacos , Glándulas Salivales/fisiopatología , Porcinos
18.
Stem Cell Res Ther ; 8(1): 200, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28962587

RESUMEN

BACKGROUND: Although tissue-resident mesenchymal stromal cells (MSCs) in the larynx have been described, their distinct characteristics and roles have not been thoroughly explored. Therefore, we investigated stem cell characteristics and regenerative potentials of single clonal populations isolated from rat epiglottic mucosa (EM), lamina propria (LP), and macula flava (MF) to determine whether they comprised laryngeal tissue-resident stem cells. METHODS: Single clonal laryngeal cells were isolated following microdissection of the EM, LP, and MF from the rat larynx. Several clonal populations from the three laryngeal subsites were selected and expanded in vitro. We compared the stem cell characteristics of self-renewal and differentiation potential, as well as the cell surface phenotypes and gene expression profiles, of laryngeal MSC-like cells to that of bone marrow MSCs (BM-MSCs). We also investigated the regenerative potential of the laryngeal cells in a radiation-induced laryngeal injury animal model. RESULTS: Self-renewing, clonal cell populations were obtained from rat EM, LP, and MF. EM-derived and LP-derived clonal cells had fibroblast-like features, while MF-resident clonal cells had stellate cell morphology and lipid droplets containing vitamin A. All laryngeal clonal cell populations had MSC-like cell surface marker expression (CD29, CD44, CD73, and CD90) and the potential to differentiate into bone and cartilage cell lineages; EM-derived and MF-derived cells, but not LP-derived cells, were also able to differentiate into adipocytes. Clonal cells isolated from the laryngeal subsites exhibited differential extracellular matrix-related gene expression. We found that the mesenchymal and stellate cell-related genes desmin and nestin were enriched in laryngeal MSC-like cells relative to BM-MSCs (P < 0.001). Growth differentiation factor 3 (GDF3) and glial fibrillary acidic protein (GFAP) transcript and protein levels were higher in MF-derived cells than in other laryngeal populations (P < 0.001). At 4 weeks after transplantation, laryngeal MF-derived and EM-derived cells contributed to laryngeal epithelial and/or glandular regeneration in response to radiation injury. CONCLUSIONS: These results suggest that cell populations with MSC characteristics reside in the EM, LP, and MF of the larynx. Laryngeal MSC-like cells contribute to regeneration of the larynx following injury; further investigation is needed to clarify the differential roles of the populations in laryngeal tissue regeneration, as well as the clinical implications for the treatment of laryngeal disease.


Asunto(s)
Diferenciación Celular , Laringe/citología , Células Madre Mesenquimatosas/citología , Animales , Linaje de la Célula , Proliferación Celular , Desmina/genética , Desmina/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Factor 3 de Diferenciación de Crecimiento/genética , Factor 3 de Diferenciación de Crecimiento/metabolismo , Laringe/lesiones , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/clasificación , Células Madre Mesenquimatosas/metabolismo , Nestina/genética , Nestina/metabolismo , Traumatismos Experimentales por Radiación/terapia , Ratas , Ratas Sprague-Dawley
19.
Sci Rep ; 7(1): 5690, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720775

RESUMEN

Phenotype transition of peritoneum is an early mechanism of peritoneal fibrosis. Metformin, 5'-adenosine monophosphate-activated protein kinase (AMPK) activator, has recently received a new attention due to its preventive effect on organ fibrosis and cancer metastasis by inhibiting epithelial-to-mesenchymal transition (EMT). We investigated the effect of metformin on EMT of human peritoneal mesothelial cells (HPMC) and animal model of peritoneal dialysis (PD). TGF-ß1-induced EMT in HPMC was ameliorated by metformin. Metformin alleviated NAPDH oxidase- and mitochondria-mediated ROS production with an increase in superoxide dismutase (SOD) activity and SOD2 expression. Metformin inhibited the activation of Smad2/3 and MAPK, GSK-3ß phosphorylation, nuclear translocalization of ß-catenin and Snail in HPMCs. Effect of metformin on TGF-ß1-induced EMT was ameliorated by either AMPK inhibitor or AMPK gene silencing. Another AMPK agonist, 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide partially blocked TGF-ß1-induced EMT. In animal model of PD, intraperitoneal metformin decreased the peritoneal thickness and EMT with an increase in ratio of reduced to oxidized glutathione and the expression of SOD whereas it decreased the expression of nitrotyrosine and 8-hydroxy-2'-deoxyguanosine. Therefore, a modulation of AMPK in peritoneum can be a novel tool to prevent peritoneal fibrosis by providing a favorable oxidant/anti-oxidant milieu in peritoneal cavity and ameliorating phenotype transition of peritoneal mesothelial cells.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Metformina/farmacología , Peritoneo/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Estrés Oxidativo/efectos de los fármacos , Diálisis Peritoneal/efectos adversos , Fibrosis Peritoneal/tratamiento farmacológico , Peritoneo/citología , Proteínas Quinasas , Ratas Sprague-Dawley
20.
Ann Rehabil Med ; 41(1): 34-41, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28289633

RESUMEN

OBJECTIVE: To evaluate the clinical features that could serve as predictive factors for improvement in gait speed after robotic treatment. METHODS: A total of 29 patients with motor incomplete spinal cord injury received 4-week robot-assisted gait training (RAGT) on the Lokomat (Hocoma AG, Volketswil, Switzerland) for 30 minutes, once a day, 5 times a week, for a total of 20 sessions. All subjects were evaluated for general characteristics, the 10-Meter Walk Test (10MWT), the Lower Extremity Motor Score (LEMS), the Functional Ambulatory Category (FAC), the Walking Index for Spinal Cord Injury version II (WISCI-II), the Berg Balance Scale (BBS), and the Spinal Cord Independence Measure version III (SCIM-III) every 0, and 4 weeks. After all the interventions, subjects were stratified using the 10MWT score at 4 weeks into improved group and non-improved group for statistical analysis. RESULTS: The improved group had younger age and shorter disease duration than the non-improved group. All subjects with the American Spinal Injury Association Impairment Scale level C (AIS-C) tetraplegia belonged to the non-improved group, while most subjects with AIS-C paraplegia, AIS-D tetraplegia, and AIS-D paraplegia belonged to the improved group. The improved group showed greater baseline lower extremity strength, balance, and daily living function than the non-improved group. CONCLUSION: Assessment of SCIM-III, BBS, and trunk control, in addition to LEMS, have potential for predicting the effects of robotic treatment in patients with motor incomplete spinal cord injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...