Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 21(1): 100, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944950

RESUMEN

BACKGROUND: Cathepsin B, a cysteine protease, is considered a potential biomarker for early diagnosis of cancer and inflammatory bowel diseases. Therefore, more feasible and effective diagnostic method may be beneficial for monitoring of cancer or related diseases. RESULTS: A phage-display library was biopanned against biotinylated cathepsin B to identify a high-affinity peptide with the sequence WDMWPSMDWKAE. The identified peptide-displaying phage clones and phage-free synthetic peptides were characterized using enzyme-linked immunosorbent assays (ELISAs) and electrochemical analyses (impedance spectroscopy, cyclic voltammetry, and square wave voltammetry). Feasibilities of phage-on-a-sensor, peptide-on-a-sensor, and peptide-on-a-AuNPs/MXene sensor were evaluated. The limit of detection and binding affinity values of the peptide-on-a-AuNPs/MXene sensor interface were two to four times lower than those of the two other sensors, indicating that the peptide-on-a-AuNPs/MXene sensor is more specific for cathepsin B (good recovery (86-102%) and %RSD (< 11%) with clinical samples, and can distinguish different stages of Crohn's disease. Furthermore, the concentration of cathepsin B measured by our sensor showed a good correlation with those estimated by the commercially available ELISA kit. CONCLUSION: In summary, screening and rational design of high-affinity peptides specific to cathepsin B for developing peptide-based electrochemical biosensors is reported for the first time. This study could promote the development of alternative antibody-free detection methods for clinical assays to test inflammatory bowel disease and other diseases.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Catepsina B , Oro , Péptidos/química , Técnicas Biosensibles/métodos , Biblioteca de Péptidos , Ensayo de Inmunoadsorción Enzimática/métodos
2.
Anal Chim Acta ; 1251: 341018, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36925304

RESUMEN

Influenza viruses are known to cause pandemic flu through inter-human and animal-to-human transmissions. Neuraminidase (NA), which is a surface glycoprotein of both influenza A and B viruses, is a minor immunogenic determinant; however, it has been proposed as an ideal candidate for a real testing. We successfully identified an affinity peptide which is specific to the influenza H5N1 virus NA via phage display technique and observed initially its binding affinities using enzyme-linked immunosorbent assay (ELISA). In addition, four synthetic peptides were chemically synthesized to develop an affinity peptide-based electrochemical biosensing system. Among all peptides tested, INA BP2 was selected as a potential candidate and subjected to square-wave voltammetry (SWV) for evaluating their detection performance. To enhance analytical performance, a three-dimensional porous bovine serum albumin (BSA)-MXene (BSA/MXene) matrix was applied. The surface morphology of the BSA/MXene film-deposited electrode was analyzed using X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Using SWV measurement, the BSA/MXene nanocomposite-based peptide sensor exhibited significant the dissociation constant (Kd = 9.34 ± 1.20 nM) and the limit of detection (LOD, 0.098 nM), resulting in good reproducibility, stability and recovery, even in the presence with spiked human plasma. These results demonstrate an alternative way of new bioanalytical sensing platform for developing more desirable sensitivity in other virus detection.


Asunto(s)
Técnicas Biosensibles , Subtipo H5N1 del Virus de la Influenza A , Gripe Humana , Nanocompuestos , Animales , Humanos , Albúmina Sérica Bovina/química , Gripe Humana/diagnóstico , Porosidad , Reproducibilidad de los Resultados , Péptidos , Nanocompuestos/química , Electrodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Límite de Detección
3.
Biosens Bioelectron ; 214: 114511, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779412

RESUMEN

Influenza viruses can cause epidemics through inter-human transmission, and the social consequences of viral transmission are incalculable. Current diagnostics for virus detection commonly relies on antibodies or nucleic acid as recognition reagent. However, a more advanced and general method for the facile development of new biosensors is increasing in demand. In this study, we report the fabrication of an ultra-sensitive peptide-based nanobiosensor using a nickel oxide (NiO)-reduced graphene oxide (rGO)/MXene nanocomposite to detect active influenza viruses (H1N1 and H5N2) and viral proteins. The sensing mechanism is based on the signal inhibition, the specific interaction between H1N1 (QMGFMTSPKHSV) and H5N1 (GHPHYNNPSLQL) binding peptides anchored on the NiO-rGO/MXene/glassy carbon electrode (GCE) surface and the viral surface protein hemagglutinin (HA) is the critical factor for the decrease in the peak current of the sensor. In this strategy, the NiO-rGO/MXene nanocomposite results in synergistic signal effects, including electrical conductivity, porosity, electroactive surface area, and active site availability when viruses are deposited on the electrode. Based on these observations, the results showed that the developed nanobiosensor was capable of highly sensitive and specific detection of their corresponding influenza viruses and viral proteins with a very low detection limit (3.63 nM of H1N1 and 2.39 nM for H5N1, respectively) and good recovery. The findings demonstrate that the proposed NiO-rGO/MXene-based peptide biosensor can provide insights for developing a wide range of clinical screening tools for detecting affected patients.


Asunto(s)
Técnicas Biosensibles , Grafito , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Nanocompuestos , Técnicas Biosensibles/métodos , Grafito/química , Humanos , Nanocompuestos/química , Níquel , Proteínas Virales
4.
Talanta ; 248: 123613, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35653962

RESUMEN

Identifying alternatives to antibodies as bioreceptors to test samples feasibly is crucial for developing next-generation in vitro diagnostic methods. Here, we aimed to devise an analytical method for detecting H1N1 viral proteins (hemagglutinin [HA] and neuraminidase [NA]) as well as the complete H1N1 virus with high sensitivity and selectivity. By applying biopanning of M13 peptide libraries, high affinity peptides specific for HA or NA were successfully identified. After selection, three different synthetic peptides that incorporated gold-binding motifs were designed and chemically synthesized on the basis of the original sequence identified phage display technique with or without two repeat. Their binding interactions were characterized by enzyme-linked immunosorbent assay (ELISA), square wave voltammetry (SWV), Time of flight-secondary ion mass spectroscopy (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The binding constants (Kd) of HA BP1, HA BP2 and NA BP1 peptides were found to be 169.72 nM, 70.02 nM and 224.49 nM for HA or NA proteins by electrochemical measurements (SWV). The single use of HA BP2 peptide enabled the detection of either H1N1 viral proteins or the actual H1N1 virus, while NA BP1 peptide exhibited lower binding for real H1N1 virus particles. Moreover, the use of both HA BP1 and BP2 as a divalent capturing reagent improved sensor performance as well as the strength of the electrochemical signal, thereby exhibiting a dual synergistic effect for the electrochemical detection of H1N1 antigens with satisfactory specificity and sensitivity (limit of detection of 1.52 PFU/mL).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Neuraminidasa/química , Péptidos/química , Receptores de Péptidos , Proteínas Virales
5.
Adv Colloid Interface Sci ; 304: 102664, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35413509

RESUMEN

Graphene is an intriguing two-dimensional honeycomb-like carbon material with a unique basal plane structure, charge carrier mobility, thermal conductivity, wide electrochemical spectrum, and unusual physicochemical properties. Therefore, it has attracted considerable scientific interest in the field of nanoscience and bionanotechnology. The high specific surface area of graphene allows it to support high biomolecule loading for good detection sensitivity. As such, graphene, graphene oxide (GO), and reduced GO are excellent materials for the fabrication of new nanocomposites and electrochemical sensors. Graphene has been widely used as a chemical building block and/or scaffold with various materials to create highly sensitive and selective electrochemical sensing microdevices. Over the past decade, significant advancements have been made by utilizing graphene and graphene-based nanocomposites to design electrochemical sensors with enhanced analytical performance. This review focus on the synthetic strategies, as well as the structure-to-function studies of graphene, electrochemistry, novel multi nanocomposites combining graphene, limit of detection, stability, sensitivity, assay time. Finally, the review describes the challenges, strategies and outlook on the future development of graphene sensors technology that would be usable for the internet of things are also highlighted.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanocompuestos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electroquímica , Grafito/química , Nanocompuestos/química
6.
Bioelectrochemistry ; 145: 108090, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35240465

RESUMEN

Caspase-3, a cysteine-dependent protease, is considered a reliable molecular biomarker for the diagnosis and prognosis of apoptosis-related diseases. In this study, we demonstrated a phage-based electrochemical biosensor for the evaluation of cell apoptosis by the sensitive and specific detection of caspase-3. Specifically, for screening of affinity peptide-displayed phages, phage display was performed using M13 phage libraries (cyclic forms of peptides), and we identified potential affinity peptide-displayed phage clones with the sequence CPTTMWRYC. After characterization of its binding affinity using enzyme-linked immunosorbent assay, whole phage particles were covalently attached to a gold surface using coupling chemistry (MUA-EDC/NHS). The developed phage sensor was characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), electrochemical analysis using cyclic voltammetry (CV), and square wave voltammetry (SWV). Under optimal conditions, the affinity peptide-displayed phage sensor showed a good binding affinity (Kd = 0.13 ± 0.56 µM) and limit of detection (0.39 µM) for caspase-3 detection. Furthermore, developed phage sensor could be monitored the response of apoptotic HeLa cells by detecting caspase-3 activity. This work should stimulate the development of efficient alternative caspase-3 detection methods for the diagnosis and prognosis of apoptosis-related diseases.


Asunto(s)
Bacteriófago M13 , Técnicas Biosensibles , Técnicas Biosensibles/métodos , Caspasa 3 , Técnicas Electroquímicas , Células HeLa , Humanos , Péptidos/química
7.
Food Chem ; 378: 132061, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35032803

RESUMEN

Whole peptide-displayed phage particles are promising alternatives to antibodies in sensor development; however, greater control and functionalization of these particles are required. In this study, we aimed to identify and create highly sensitive and selective phage-based electrochemical biosensors for detecting ovomucoid, a known food allergen. Phage display was performed using two different phage libraries (cyclic and linear form of peptides), which displayed affinity peptides capable of binding specifically to ovomucoid. Throughout the biopanning, two phage clones that displayed both peptides (CTDKASSSC and WWQPYSSAPRWL) were selected. After the characterization of their binding affinities, both whole phage particles were covalently attached to a gold electrode using crosslinking chemistry (MUA-EDC/NHS and Sulfo-LC/SPDP); the developed phage sensor was characterized using cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The cyclic peptide-displayed phage sensor modified using EDC/NHS chemistry exhibited significantly better binding affinity (Kd = 2.36 ± 0.44 µg/mL) and limit of detection (LOD, 0.12 µg/mL) for ovomucoid than the linear phage sensor, resulting in good reproducibility and recovery, even in an actual egg and white wine samples. This approach may provide an alternative and more efficient way of sensing food allergens with desirable sensitivity, selectivity, and feasibility in food diagnostic applications.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Bacteriófagos/genética , Técnicas Electroquímicas , Electrodos , Límite de Detección , Ovomucina , Reproducibilidad de los Resultados
8.
Food Chem ; 371: 131120, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634648

RESUMEN

Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.


Asunto(s)
Técnicas Biosensibles , Hipersensibilidad a los Alimentos , Alérgenos , Alimentos , Humanos , Proteínas
9.
J Gastric Cancer ; 21(2): 191-202, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34234980

RESUMEN

PURPOSE: A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. MATERIALS AND METHODS: An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6-8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). RESULTS: Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. CONCLUSIONS: Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2-3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.

10.
Mol Pharm ; 16(4): 1586-1595, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869911

RESUMEN

Technetium-99m-labeled human serum albumin (99mTc-HSA) has been utilized as a blood pool imaging agent in the clinic for several decades. However, 99mTc-HSA has a short circulation time, which is a critical shortcoming for a blood pool imaging agent. Herein, we developed a novel 99mTc-labeled HSA with a long circulation time using click chemistry and a chelator, 2,2'-dipicolylamine (DPA), (99mTc-DPA-HSA). Specifically, we examined the feasibility of copper-free strain-promoted alkyne-azide cycloaddition (SPAAC) for the incorporation of HSA to the [99mTc (CO)3(H2O)3]+ system by adopting a chelate-then-click approach. In this strategy, a potent chelate system, azide-functionalized DPA, was first complexed with [99mTc (CO)3(H2O)3]+, followed by the SPAAC click reaction with azadibenzocyclooctyne-functionalized HSA (ADIBO-HSA) under biocompatible conditions. Radiolabeling efficiency of azide-functionalized DPA (99mTc-DPA) was >98%. Click conjugation efficiency of 99mTc-DPA with ADIBO-HSA was between 76 and 99% depending on the number of ADIBO moieties attached to HSA. In whole-body in vivo single photon emission computed tomography images, the blood pool uptakes of 99mTc-DPA-HSA were significantly enhanced compared to those of 99mTc-HSA at 10 min, 2, and 6 h after the injection ( P < 0.001, 0.025, and 0.003, respectively). Furthermore, the blood activities of 99mTc-DPA-HSA were 8 times higher at 30 min and 10 times higher at 3 h after the injection compared to those of conventional 99mTc-HSA in ex vivo biodistribution experiment. The results exhibit the potential of 99mTc-DPA-HSA as a blood pool imaging agent and further illustrate the promise of the pre-labeling SPAAC approach for conjugation of heat-sensitive biological targeting vectors with [99mTc (CO)3(H2O)3]+.


Asunto(s)
Química Clic , Compuestos de Organotecnecio/síntesis química , Compuestos de Organotecnecio/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Albúmina Sérica Humana/síntesis química , Albúmina Sérica Humana/farmacocinética , Animales , Quelantes/química , Reacción de Cicloadición , Humanos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...