Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(15): e202300119, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780128

RESUMEN

Single-atom nanozymes (SAzymes) are promising in next-generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi-enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi-enzymatic performances. The constructed MnSA -N3 -coordinated SAzymes (MnSA -N3 -C) exhibits much more remarkable oxidase-, peroxidase-, and glutathione oxidase-like activities than that of MnSA -N4 -C. Based on experimental and theoretical results, these multi-enzyme-like behaviors are highly dependent on the coordination number of single atomic Mn sites by local charge polarization. As a consequence, a series of colorimetric biosensing platforms based on MnSA -N3 -C SAzymes is successfully built for specific recognition of biological molecules. These findings provide atomic-level insight into the microenvironment of nanozymes, promoting rational design of other demanding biocatalysts.


Asunto(s)
Técnicas Biosensibles , Manganeso , Colorimetría , Carbono , Peroxidasas , Peroxidasa , Catálisis
2.
J Vis Exp ; (189)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36533837

RESUMEN

Supercapacitors (SC) have attracted attention as energy storage devices due to their high density and long cycle performance. SCs used in devices operating in stretchable systems require stretchable electrolytes. Gel polymer electrolytes (GPEs) are an ideal replacement for liquid electrolytes. Polyvinyl alcohol (PVA) and polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) have been widely applied as a polymer-matrix-based electrolytes for supercapacitors because of their low cost, chemically stable, wide operating temperature range, and high ionic conductivities. Herein, we describe the procedures for (1) synthesizing a gel polymer electrolyte with PVA and PVDF-HFP, (2) measuring the electrochemical stability of the gel polymer electrolytes by cyclic voltammetry (CV), (3) measuring the ionic conductivity of the gel polymer electrolytes by electrochemical impedance spectroscopy (EIS), (4) assembling symmetric coin cells using activated carbon (AC) electrodes with the PVA- and PVDF-HFP-based gel polymer electrolytes, and (5) evaluating the electrochemical performance using galvanostatic charge-discharge analysis (GCD) and CV at 25 °C. Additionally, we describe the challenges and insights gained from these experiments.

3.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35888929

RESUMEN

The increasing use of rapidly fluctuating renewable energy sources, such as sunlight, has necessitated the use of supercapacitors, which are a type of energy storage system with high power. Chemically exfoliated graphene oxide (GO) is a representative starting material in the fabrication of supercapacitor electrodes based on reduced GO (rGO). However, the restacking of rGO sheets driven by π-π stacking interactions leads to a significant decrease in the electrochemically active surface area, leading to a loss of energy density. Here, to effectively inhibit restacking and construct a three-dimensional wrinkled structure of rGO (3DWG), we propose an agarose gel-templating method that uses agarose gel as a soft and removable template. The 3DWG, prepared via the sequential steps of gelation, freeze-drying, and calcination, exhibits a macroporous 3D structure and 5.5-fold higher specific capacitance than that of rGO restacked without the agarose template. Further, we demonstrate a "gel-stamping" method to fabricate thin-line patterned 3DWG, which involves the gelation of the GO-agarose gel within micrometer-sized channels of a customized polydimethylsiloxane (PDMS) mold. As an easy and low-cost manufacturing process, the proposed agarose gel templating method could provide a promising strategy for the 3D structuring of rGO.

4.
Adv Sci (Weinh) ; 9(8): e2104908, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35064768

RESUMEN

Despite its importance for the establishment of a carbon-neutral society, the electrochemical reduction of CO2  to value-added products has not been commercialized yet because of its sluggish kinetics and low selectivity. The present work reports the fabrication of a low-crystalline trimetallic (AuCuIn) CO2  electroreduction catalyst and demonstrates its high performance in a gaseous CO2  electrolyzer. The high Faradaic efficiency (FE) of CO formation observed at a low overpotential in a half-cell test is ascribed to the controlled crystallinity and composition of this catalyst as well as to its faster charge transfer, downshifted d-band center, and low oxophilicity. The gaseous CO2  electrolyzer with the optimal catalyst as the cathode exhibits superior cell performance with a high CO FE and production rate, outperforming state-of-the-art analogs. Thus, the obtained results pave the way to the commercialization of CO2  electrolyzers and promote the establishment of a greener society.

5.
J Vis Exp ; (179)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-35068482

RESUMEN

The three-electrode system is a basic and general analytical platform for investigating the electrochemical performance and characteristics of energy storage systems at the material level. Supercapacitors are one of the most important emergent energy storage systems developed in the past decade. Here, the electrochemical performance of a supercapacitor was evaluated using a three-electrode system with a potentiostat device. The three-electrode system consisted of a working electrode (WE), reference electrode (RE), and counter electrode (CE). The WE is the electrode where the potential is controlled and the current is measured, and it is the target of research. The RE acts as a reference for measuring and controlling the potential of the system, and the CE is used to complete the closed circuit to enable electrochemical measurements. This system provides accurate analytical results for evaluating electrochemical parameters such as the specific capacitance, stability, and impedance through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Several experimental design protocols are proposed by controlling the parameter values of the sequence when using a three-electrode system with a potentiostat device to evaluate the electrochemical performance of supercapacitors. Through these protocols, the researcher can set up a three-electrode system to obtain reasonable electrochemical results for assessing the performance of supercapacitors.

6.
J Vis Exp ; (177)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34927606

RESUMEN

There are tremendous efforts in various fields to apply the inkjet printing method for the fabrication of wearable devices, displays, and energy storage devices. To get high-quality products, however, sophisticated operation skills are required depending on the physical properties of the ink materials. In this regard, optimizing the inkjet printing parameters is as important as developing the physical properties of the ink materials. In this study, optimization of the inkjet printing software parameters is presented for fabricating a supercapacitor. Supercapacitors are attractive energy storage systems because of their high power density, long lifespan, and various applications as power sources. Supercapacitors can be used in the Internet of Things (IoT), smartphones, wearable devices, electrical vehicles (EVs), large energy storage systems, etc. The wide range of applications demands a new method that can fabricate devices in various scales. The inkjet printing method can break through the conventional fixed-size fabrication method.


Asunto(s)
Tinta , Impresión Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...