Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Am J Dent ; 36(5): 215-221, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37865807

RESUMEN

PURPOSE: To evaluate the efficacy of COMORAL a new multi-channeled oral irrigation (MCOI) unit with pulsating water jet, in plaque score reduction and gingivitis. METHODS: This was a single-blinded clinical randomized controlled trial (NCT05031260). Forty-two healthy subjects between 18 to 35 years old were initially recruited, and the control group (n = 20) and the intervention group (n = 17) were randomly assigned. Both groups were asked to brush their teeth one or two times a day without any supplementary oral hygiene products while the intervention group used COMORAL 3 times a day, 5 days a week. Clinical indices including gingival index (GI), plaque index (PI), bleeding on probing (BOP), pocket depth (PD), gingival recession (GR), and clinical attachment loss (CAL) were obtained at the baseline (D0), day 14 (D14), and day 28 (D28). Saliva was collected to examine the presence of periodontal pathogens. The repeated measures analysis of variance or generalized estimating equation was used to compare the interaction between groups and time points. The independent t-test or Mann-Whitney test were used for intergroup differences at each time point. RESULTS: At V0, PI, GI, BOP, and PD scores showed no differences between the two groups. At V1 and V2, these scores showed significant difference between two groups (P < 0.05) such that the intervention group showed gradual decreases while the control group showed no change. There were no differences in GR, CAL, and periodontal pathogens between the two groups. COMORAL showed improvement in reducing gingival inflammation and dental plaque formation adjuvant to routine toothbrushing in healthy adults. CLINICAL SIGNIFICANCE: The results of this study can be useful to clinicians when selecting oral hygiene devices that can help improve patients' routine oral hygiene practice and their overall oral health.


Asunto(s)
Placa Dental , Gingivitis , Adulto , Humanos , Adolescente , Adulto Joven , Placa Dental/prevención & control , Gingivitis/prevención & control , Higiene Bucal , Cepillado Dental , Método Simple Ciego , Índice de Placa Dental
2.
Cells ; 12(18)2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37759448

RESUMEN

Emerging evidence indicates that intracellular calcium (Ca2+) levels and their regulatory proteins play essential roles in normal stem cell proliferation and differentiation. Cancer stem-like cells (CSCs) are subpopulations of cancer cells that retain characteristics similar to stem cells and play an essential role in cancer progression. Recent studies have reported that the Orai3 calcium channel plays an oncogenic role in human cancer. However, its role in CSCs remains underexplored. In this study, we explored the effects of Orai3 in the progression and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC). During the course of OSCC progression, the expression of Orai3 exhibited a stepwise augmentation. Notably, Orai3 was highly enriched in CSC populations of OSCC. Ectopic Orai3 expression in non-tumorigenic immortalized oral epithelial cells increased the intracellular Ca2+ levels, acquiring malignant growth and CSC properties. Conversely, silencing of the endogenous Orai3 in OSCC cells suppressed the CSC phenotype, indicating a pivotal role of Orai3 in CSC regulation. Moreover, Orai3 markedly increased the expression of inhibitor of DNA binding 1 (ID1), a stemness transcription factor. Orai3 and ID1 exhibited elevated expression within CSCs compared to their non-CSC counterparts, implying the functional importance of the Orai3/ID1 axis in CSC regulation. Furthermore, suppression of ID1 abrogated the CSC phenotype in the cell with ectopic Orai3 overexpression and OSCC. Our study reveals that Orai3 is a novel functional CSC regulator in OSCC and further suggests that Orai3 plays an oncogenic role in OSCC by promoting cancer stemness via ID1 upregulation.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Neoplasias Orofaríngeas , Humanos , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Canales de Calcio , Hiperplasia , Proteína 1 Inhibidora de la Diferenciación
3.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077186

RESUMEN

Alcohol consumption is associated with an increased risk of several cancers, including oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive. Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling between cancer stemness and metabolic reprogramming. We further demonstrated that chronic ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism of alcohol-mediated carcinogenesis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Etanol/metabolismo , Etanol/toxicidad , Regulación Neoplásica de la Expresión Génica , Glucólisis , Neoplasias de Cabeza y Cuello/patología , Humanos , Neoplasias de la Boca/patología , Células Madre Neoplásicas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
4.
Int J Oral Sci ; 14(1): 16, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35307731

RESUMEN

Bacterial infection is a common finding in patients, who develop medication-related osteonecrosis of the jaw (MRONJ) by the long-term and/or high-dose use of anti-resorptive agents such as bisphosphonate (BPs). However, pathological role of bacteria in MRONJ development at the early stage remains controversial. Here, we demonstrated that commensal microbiota protects against MRONJ development in the pulp-exposed periapical periodontitis mouse model. C57/BL6 female mice were treated with intragastric broad-spectrum antibiotics for 1 week. Zoledronic acid (ZOL) through intravenous injection and antibiotics in drinking water were administered for throughout the experiment. Pulp was exposed on the left maxillary first molar, then the mice were left for 5 weeks after which bilateral maxillary first molar was extracted and mice were left for additional 3 weeks to heal. All mice were harvested, and cecum, maxilla, and femurs were collected. ONJ development was assessed using µCT and histologic analyses. When antibiotic was treated in mice, these mice had no weight changes, but developed significantly enlarged ceca compared to the control group (CTL mice). Periapical bone resorption prior to the tooth extraction was similarly prevented when treated with antibiotics, which was confirmed by decreased osteoclasts and inflammation. ZOL treatment with pulp exposure significantly increased bone necrosis as determined by empty lacunae and necrotic bone amount. Furthermore, antibiotics treatment could further exacerbate bone necrosis, with increased osteoclast number. Our findings suggest that the commensal microbiome may play protective role, rather than pathological role, in the early stages of MRONJ development.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Microbiota , Enfermedades Periapicales , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/prevención & control , Difosfonatos , Femenino , Humanos , Ratones , Ácido Zoledrónico
5.
Exp Cell Res ; 405(1): 112656, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34033760

RESUMEN

DYRK1A, one of the dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), plays an important role in various biological processes by regulating downstream targets via kinase-dependent and independent mechanisms. Here, we report a novel role of DYRK1A in maintaining tumor growth and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC) cells. Deletion of DYRK1A from OSCC cells abrogated their in vivo tumorigenicity and self-renewal capacity, the key features of cancer stem-like cells (CSCs; also referred to as tumor-initiating cells). The DYRK1A deletion also induced the suppression of CSC populations and properties, such as migration ability and chemoresistance. Conversely, ectopic expression of DYRK1A in OSCC cells augmented their CSC phenotype. Among five DYRK members (DYRK1A, 1B, 2, 3, and 4), DYRK1A is the most dominantly expressed kinase, and its expression is upregulated in OSCC compared to normal oral epithelial cells. More importantly, DYRK1A was highly enriched in various CSC-enriched OSCC populations compared to their corresponding non-CSC populations, indicating its pivotal role in cancer progression and stemness. Further, our study revealed that fibroblast growth factor 2 (FGF2) is a key regulator in the DYRK1A-mediated CSC regulation. Functional studies demonstrated that the loss of DYRK1A inhibits CSC phenotype via reduction of FGF2. Overexpression of DYRK1A promotes CSC phenotype via upregulation of FGF2. Our study delineates a novel mechanism of cancer stemness regulation by DYRK1A-FGF2 axis in OSCC. Thus, inhibition of DYRK1A would lead to a potential novel therapeutic option for targeting CSCs in OSCC.


Asunto(s)
Carcinogénesis/patología , Carcinoma de Células Escamosas/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca/patología , Células Madre Neoplásicas/patología , Neoplasias Orofaríngeas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular , Humanos , Ratones , Ratones Desnudos , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Orofaríngeas/genética , Neoplasias Orofaríngeas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas DyrK
6.
Oncol Rep ; 45(1): 291-298, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33155662

RESUMEN

Cancer stem­like cells (CSCs; also referred to as tumor­initiating cells) play crucial roles in tumor progression and aggressiveness. Recent studies have demonstrated the antitumor activity of zoledronic acid (ZA), a third­generation bisphosphonate, in various types of human cancer. However, its effect on oral CSCs and the underlying mechanism remain obscure. The present study demonstrated that ZA suppresses the growth and stemness properties of oral/oropharyngeal squamous cell carcinoma (OSCC) cells. ZA inhibited the malignant characteristics of OSCC cells, such as anchorage­independent growth and epithelial thickening in organotypic raft cultures. Moreover, ZA treatment resulted in suppression of self­renewal capacity, a key feature of CSCs. ZA also inhibited important CSC properties, such as migration and chemo­radioresistance. Mechanistically, ZA exposure significantly decreased chemokine (C­C motif) ligand 3 (CCL3) expression in OSCC cells. It was further demonstrated that CCL3 signaling via its receptor is crucial for supporting the CSC phenotype in OSCC cells. Moreover, an antagonist of the CCL3 receptor reversed the effect of CCL3 on CSC properties, and exogenous CCL3 rescued the suppressaed CSC phenotype in ZA­treated OSCC cells. These results demonstrated that ZA suppresses the CSC phenotype in OSCC cells by reducing CCL3 expression, suggesting that ZA may be an effective therapeutic agent for oral cancer by targeting CSCs.


Asunto(s)
Quimiocina CCL3/fisiología , Neoplasias de la Boca/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Ácido Zoledrónico/farmacología , Línea Celular Tumoral , Quimiocina CCL3/análisis , Humanos , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/patología , Células Madre Neoplásicas/química , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
7.
PLoS One ; 15(11): e0242276, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33196678

RESUMEN

Alcohol (ethanol, EtOH) consumption during pregnancy can result in fetal alcohol spectrum disorders (FASDs), which are characterized by prenatal and postnatal growth restriction and craniofacial dysmorphology. Recently, cell-derived extracellular vesicles, including exosomes and microvesicles containing several species of RNAs (exRNAs), have emerged as a mechanism of cell-to-cell communication. However, EtOH's effects on the biogenesis and function of non-coding exRNAs during fetal development have not been explored. Therefore, we studied the effects of maternal EtOH exposure on the composition of exosomal RNAs in the amniotic fluid (AF) using rat fetal alcohol exposure (FAE) model. Through RNA-Seq analysis we identified and verified AF exosomal miRNAs with differential expression levels specifically associated with maternal EtOH exposure. Uptake of purified FAE AF exosomes by rBMSCs resulted in significant alteration of molecular markers associated with osteogenic differentiation of rBMSCs. We also determined putative functional roles for AF exosomal miRNAs (miR-199a-3p, miR-214-3p and let-7g) that are dysregulated by FAE in osteogenic differentiation of rBMSCs. Our results demonstrate that FAE alters AF exosomal miRNAs and that exosomal transfer of dysregulated miRNAs has significant molecular effects on stem cell regulation and differentiation. Our results further suggest the usefulness of assessing molecular alterations in AF exRNAs to study the mechanisms of FAE teratogenesis that should be further investigated by using an in vivo model.


Asunto(s)
Líquido Amniótico/metabolismo , Diferenciación Celular/efectos de los fármacos , Etanol/farmacología , Exosomas/metabolismo , MicroARNs/metabolismo , Líquido Amniótico/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Trastornos del Espectro Alcohólico Fetal/genética , Trastornos del Espectro Alcohólico Fetal/metabolismo , Trastornos del Espectro Alcohólico Fetal/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley
8.
Int J Oral Sci ; 12(1): 3, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911577

RESUMEN

High-risk human papillomaviruses (HPVs) are involved in the development of several human cancers, including oropharyngeal squamous cell carcinomas. However, many studies have demonstrated that HPV alone is not sufficient for the oncogenic transformation of normal human epithelial cells, indicating that additional cofactors are required for the oncogenic conversion of HPV-infected cells. Inasmuch as chronic inflammation is also closely associated with carcinogenesis, we investigated the effect of chronic exposure to tumor necrosis factor α (TNFα), the major proinflammatory cytokine, on oncogenesis in two immortalized oral keratinocyte cell lines, namely, HPV16-immortalized and human telomerase reverse transcriptase (hTERT)-immortalized cells. TNFα treatment led to the acquisition of malignant growth properties in HPV16-immortalized cells, such as (1) calcium resistance, (2) anchorage independence, and (3) increased cell proliferation in vivo. Moreover, TNFα increased the cancer stem cell-like population and stemness phenotype in HPV16-immortalized cells. However, such transforming effects were not observed in hTERT-immortalized cells, suggesting an HPV-specific role in TNFα-promoted oncogenesis. We also generated hTERT-immortalized cells that express HPV16 E6 and E7. Chronic TNFα exposure successfully induced the malignant growth and stemness phenotype in the E6-expressing cells but not in the control and E7-expressing cells. We further demonstrated that HPV16 E6 played a key role in TNFα-induced cancer stemness via suppression of the stemness-inhibiting microRNAs miR-203 and miR-200c. Overexpression of miR-203 and miR-200c suppressed cancer stemness in TNFα-treated HPV16-immortalized cells. Overall, our study suggests that chronic inflammation promotes cancer stemness in HPV-infected cells, thereby promoting HPV-associated oral carcinogenesis.


Asunto(s)
Carcinoma de Células Escamosas/genética , Papillomavirus Humano 16/metabolismo , MicroARNs/metabolismo , Neoplasias de la Boca/genética , Boca/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/virología , Telomerasa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinoma de Células Escamosas/patología , Transformación Celular Viral/genética , Regulación de la Expresión Génica , Genes Virales , Papillomavirus Humano 16/genética , Humanos , MicroARNs/genética , Boca/virología , Neoplasias de la Boca/patología , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Telomerasa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
9.
Oncotarget ; 10(23): 2306-2319, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-31040921

RESUMEN

Nuclear factor of activated T cells (NFATc1-c4), a family of transcription factors, is involved in many biological processes by regulating various downstream target genes. However, their role in cancer progression remains controversial. We here report that NFATc3 is the dominant isoform of NFAT in human oral epithelial cells, and its expression was increased in a stepwise manner during the progression of oral/oropharyngeal squamous cell carcinoma (OSCC). More importantly, NFATc3 was highly enriched in self-renewing cancer stem-like cells (CSCs) of OSCC. Increased expression of NFATc3 was required for the maintenance of CSC self-renewal, as NFATc3 inhibition suppressed tumor sphere formation in OSCC cells. Conversely, ectopic NFATc3 expression in non-tumorigenic immortalized oral epithelial cells resulted in the acquisition of self-renewal and increase in CSC phenotype, such as enhanced ALDH1HIGH cell population, mobility and drug resistance, indicating the functional role of NFATc3 in the maintenance of CSC phenotype. NFATc3 expression also converted the non-tumorigenic oral epithelial cells to malignant phenotypes. Mechanistic investigations further reveal that NFATc3 binds to the promoter of OCT4, a stemness transcription factor, for its activation, thereby promoting CSC phenotype. Moreover, suppression of OCT4 abrogated CSC phenotype in the cell with ectopic NFATc3 overexpression and OSCC, and ectopic OCT4 expression sufficiently induced CSC phenotype. Our study indicates that NFATc3 plays an important role in the maintenance of cancer stemness and OSCC progression via novel NFATc3-OCT4 axis, suggesting that this axis may be a potential therapeutic target for OSCC CSCs.

10.
Crit Rev Oncog ; 23(3-4): 189-200, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30311574

RESUMEN

Cancer stem cells (CSCs; also known as tumor-initiating cells) are a small population of cancer cells that retain characteristics similar to those of normal stem cells. CSCs are known to be responsible for metastasis, drug resistance, and cancer recurrence. Thus, controlling CSCs may provide an effective therapeutic intervention that inhibits tumor growth and aggressiveness. Despite the importance of targeting CSCs in cancer therapy, the detailed nature of oral CSCs remains underexplored. This article reviews the current understanding of oral CSCs, with emphasis on recent advances in novel signaling pathways involved in their stemness regulation.


Asunto(s)
Autorrenovación de las Células , Neoplasias/etiología , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Biomarcadores , Canales de Calcio/genética , Canales de Calcio/metabolismo , Separación Celular/métodos , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Neoplasias/patología , Células Madre Neoplásicas/patología , Transducción de Señal
11.
Am J Pathol ; 188(10): 2318-2327, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30059656

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but detrimental intraoral lesion that predominantly occurs in patients with long-term use of antiresorptive agents, such as bisphosphonate and denosumab, a human anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody (Ab). Surgical intervention, such as tooth extraction, is a known risk factor for MRONJ, which is often performed to eliminate preexiting pathologic inflammatory conditions, such as periodontal diseases. Nonetheless, it remains unknown whether pre-existing periodontal disease condition exacerbates, or removal of such condition ameliorates, MRONJ development after tooth extraction. In this study, we combined the ligature-induced periodontitis and the tooth extraction mouse models under the administration of zoledronic acid (ZOL) or anti-RANKL Ab, and provide experimental evidence that a pre-existing pathologic inflammatory condition exacerbates MRONJ development after tooth extraction in mice. Under ZOL administration, tooth extraction alone induced ONJ lesions; however, extraction of a ligature-placed tooth further exacerbated ONJ development. When the ligature was removed and the inflammatory condition was deescalated, ONJ development was ameliorated. Anti-RANKL Ab administration resulted in similar outcomes. Interestingly, unlike ZOL-administered mice, anti-RANKL Ab-administered mice exhibited complete absence of osteoclasts, suggesting that physical presence of osteoclasts is not directly involved in ONJ development. Collectively, our study demonstrated that periodontal disease is a functionally linked risk factor that predisposes ONJ development after tooth extraction in the presence of bisphosphonate and denosumab.


Asunto(s)
Enfermedades Maxilomandibulares/prevención & control , Osteonecrosis/prevención & control , Periodontitis/terapia , Extracción Dental , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/prevención & control , Conservadores de la Densidad Ósea/toxicidad , Denosumab/toxicidad , Modelos Animales de Enfermedad , Femenino , Enfermedades Maxilomandibulares/inducido químicamente , Ligadura , Ratones Endogámicos C57BL , Osteonecrosis/inducido químicamente
12.
Oncogenesis ; 7(5): 38, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29735981

RESUMEN

Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-ß in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-ß signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-ß signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-ß signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-ß signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -ß signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-ß signaling through the MAPK pathways.

13.
Int J Mol Med ; 41(6): 3211-3220, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29568955

RESUMEN

GV1001 is a 16­amino acid peptide derived from the human telomerase reverse transcriptase (hTERT) protein (616­626; EARPALLTSRLRFIPK), which lies within the reverse transcriptase domain. Originally developed as an anticancer vaccine, GV1001 demonstrates diverse cellular effects, including anti­inflammatory, tumor suppressive and antiviral effects. In the present study, the radioprotective and antifibrotic effects of GV1001 were demonstrated through suppressing transforming growth factor­ß (TGF­ß) signaling. Proliferating human keratinocytes underwent premature senescence upon exposure to ionizing radiation (IR), however, treatment of cells with GV1001 allowed the cells to proliferate and showed a reduction in senescent phenotype. GV1001 treatment notably increased the levels of Grainyhead­like 2 and phosphorylated (p­)Akt (Ser473), and reduced the activation of p53 and the level of p21/WAF1 in irradiated keratinocytes. It also markedly suppressed the level of TGF­ß signaling molecules, including p­small mothers against decapentaplegic (Smad)2/3 and Smad4, and TGF­ß target genes, including zinc finger E­box binding homeobox 1, fibronectin, N­cadharin and Snail, in irradiated keratinocytes. Furthermore, GV1001 suppressed TGF­ß signaling in primary human fibroblasts and inhibited myofibroblast differentiation. Chromatin immunoprecipitation revealed that GV1001 suppressed the binding of Smad2 on the promoter regions of collagen type III α1 chain (Col3a1) and Col1a1. In a dermal fibrosis model in vivo, GV1001 treatment notably reduced the thickness of fibrotic lesions and the synthesis of Col3a1. These data indicated that GV1001 ameliorated the IR­induced senescence phenotype and tissue fibrosis by inhibiting TGF­ß signaling and may have therapeutic effects on radiation­induced tissue damage.


Asunto(s)
Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Telomerasa/química , Telomerasa/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inmunoprecipitación de Cromatina , Humanos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de Heridas/efectos de los fármacos
14.
Int J Mol Med ; 40(3): 623-630, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28713904

RESUMEN

Nitrogen-containing bisphosphonates (N-BPs) are the most widely used anti-resorptive agents in the treatment of bone-related diseases. N-BPs inhibit bone resorption by specifically targeting osteoclasts, bone-resorbing cells. However, soft tissue toxicity, such as oral or gastrointestinal (GI) ulcerations has frequently been reported in N-BP users, suggesting that N-BPs may also directly target cells other than osteoclasts. Previously, we reported that BPs inhibit proliferation without inducing the apoptosis of normal human oral keratinocytes (NHOKs). However, the molecular mechanisms through which N-BPs inhibit the proliferation of NHOKs are not yet fully understood. In this study, we performed gene expression profiling in N-BP-treated NHOKs and identified cyclin A2 as one of the most commonly downregulated genes. When the NHOKs were treated with N-BPs, we found that the level of cyclin A2 was suppressed in a dose- and time-dependent manner. In addition, the protein level of cyclin A2 was also significantly lower in oral epithelial cells in N-BP-treated oral mucosal tissue constructs. Cyclin A2 promoter reporter assay revealed that N-BPs inhibited the luciferase activity, indicating that the inhibition of cyclin A2 expression occurs at the transcriptional level. Furthermore, N-BPs did not alter the expression of cyclin A2 in normal human oral fibroblasts (NHOFs), suggesting that the effect of N-BPs on cyclin A2 expression may be cell-type specific. Thus, the findings of our study demonstrate that the inhibition of NHOK proliferation by N-BPs is mediated, at least in part, by the suppression of cyclin A2 expression at the transcriptional level, which may explain the underlying mechanisms of soft tissue toxicity by N-BPs.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ciclina A2/biosíntesis , Difosfonatos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Queratinocitos/metabolismo , Transcripción Genética/efectos de los fármacos , Humanos , Queratinocitos/citología , Mucosa Bucal
15.
J Endod ; 43(8): 1302-1308, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28606672

RESUMEN

INTRODUCTION: Mesenchymal stem cells (MSCs) are typically cultured as adherent monolayer using a conventional tissue culture technique. However, this technique incompletely reproduces an in vivo microenvironment of stem cells and results in the loss of stemness properties. Three-dimensional (3D) sphere culture is one of the most widely used 3D culture techniques that have been developed to recapitulate the in vivo microenvironment. However, the stemness and multilineage differentiation capacity of spheres derived from dental pulp stem cells (DPSCs) have not been well investigated. METHODS: DPSCs were cultured and examined for the sphere-forming ability in serum-free, nonadherent conditions. The expression of pluripotency transcription factors was assayed by reverse transcription quantitative polymerase chain reaction and Western blot analysis. The expression of MSC-associated markers was determined by flow cytometry. Multilineage differentiation capacity was examined by alkaline phosphatase, alizarin red S, and oil red O assays. Subcutaneous transplantation in nude mice was used to examine the in vivo mineralized tissue-forming ability of sphere and adherent monolayer cells derived from DPSCs. RESULTS: We showed that DPSCs form spheres. DPSC spheres exhibited a distinct stem cell phenotype characterized by robust expression of pluripotency transcription factors and decreased expression of MSC-associated markers compared with their corresponding adherent monolayer cells. Functionally, DPSC spheres exhibited enhanced in vitro multilineage differentiation capacity. The expression of multilineage differentiation-related genes was also highly increased in DPSC spheres. Furthermore, DPSC sphere cells possessed higher in vivo mineralized tissue-forming ability than adherent monolayer cells. CONCLUSIONS: Our findings indicate that sphere-forming cells are unique multipotent cell populations in DPSCs. Our study further suggests that DPSC spheres may provide a unique opportunity for pulp tissue regeneration.


Asunto(s)
Pulpa Dental/citología , Células Madre Multipotentes/citología , Animales , Western Blotting , Diferenciación Celular/fisiología , Células Cultivadas , Pulpa Dental/metabolismo , Humanos , Ratones , Ratones Desnudos , Células Madre Multipotentes/metabolismo , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
16.
J Vis Exp ; (119)2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28117776

RESUMEN

Dental pulp is a vital organ of a tooth fully protected by enamel and dentin. When the pulp is exposed due to cariogenic or iatrogenic injuries, it is often capped with biocompatible materials in order to expedite pulpal wound healing. The ultimate goal is to regenerate reparative dentin, a physical barrier that functions as a "biological seal" and protects the underlying pulp tissue. Although this direct pulp-capping procedure has long been used in dentistry, the underlying molecular mechanism of pulpal wound healing and reparative dentin formation is still poorly understood. To induce reparative dentin, pulp capping has been performed experimentally in large animals, but less so in mice, presumably due to their small sizes and the ensuing technical difficulties. Here, we present a detailed, step-by-step method of performing a pulp-capping procedure in mice, including the preparation of a Class-I-like cavity, the placement of pulp-capping materials, and the restoration procedure using dental composite. Our pulp-capping mouse model will be instrumental in investigating the fundamental molecular mechanisms of pulpal wound healing in the context of reparative dentin in vivo by enabling the use of transgenic or knockout mice that are widely available in the research community.


Asunto(s)
Recubrimiento de la Pulpa Dental/métodos , Exposición de la Pulpa Dental/fisiopatología , Dentina Secundaria/fisiología , Cicatrización de Heridas , Animales , Ratones
17.
J Bone Miner Res ; 32(2): 309-318, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27567012

RESUMEN

Long-term administration of nitrogen-containing bisphosphonates can induce detrimental side effects such as bisphosphonate-related osteonecrosis of the jaw (BRONJ) in human. Although inflammation is known to be associated with BRONJ development, the detailed underlying mechanism remains unknown. Here, we report that the pro-inflammatory cytokine IL-36α is, in part, responsible for the BRONJ development. We found a notably higher level of IL-36α and lower level of collagen in the BRONJ lesions in mice. We also found that IL-36α remarkably suppressed TGF-ß-mediated expression of Collα1 and α-Sma via the activation of Erk signaling pathway in mouse gingival mesenchymal stem cells. When IL-36 signaling was abrogated in vivo, development of BRONJ lesions was ameliorated in mice. Taken together, we showed the pathologic role of IL-36α in BRONJ development by inhibiting collagen expression and demonstrated that IL-36α could be a potential marker and a therapeutic target for the prevention and treatment of BRONJ. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Colágeno/metabolismo , Interleucina-1/efectos adversos , Factor de Crecimiento Transformador beta/farmacología , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Osteonecrosis de los Maxilares Asociada a Difosfonatos/tratamiento farmacológico , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Smad/metabolismo
18.
Int J Mol Sci ; 17(12)2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27983594

RESUMEN

Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting ß cell-like stem cells (i.e., SHED-ß cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-ß cells, and that zinc supplementation at day 10 increased the levels of most pancreatic ß cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-ß cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-ß cells. We conclude that SHED can be converted into insulin-secreting ß cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-ß cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-ß cells increases.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Madre/citología , Exfoliación Dental/patología , Diente Primario/citología , Regulación hacia Arriba/efectos de los fármacos , Zinc/farmacología , Proteínas de Transporte de Catión/metabolismo , Linaje de la Célula/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Pulpa Dental/citología , Suplementos Dietéticos , Marcadores Genéticos , Humanos , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ligamento Periodontal/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
19.
J Endod ; 42(11): 1641-1646, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27637460

RESUMEN

INTRODUCTION: Surgical interventions such as tooth extraction increase the chances of developing osteonecrosis of the jaw in patients receiving bisphosphonates (BPs) for the treatment of bone-related diseases. Tooth extraction is often performed to eliminate preexisting pathological inflammatory conditions that make the tooth unsalvageable; however, the role of such conditions on bisphosphonate-related osteonecrosis of the jaw (BRONJ) development after tooth extraction is not clearly defined. Here, we examined the effects of periapical periodontitis on tooth extraction-induced BRONJ development in mice. METHODS: Periapical periodontitis was induced by exposing the pulp of the maxillary first molar for 3 weeks in C57/BL6 mice that were intravenously administered with BPs. The same tooth was extracted, and after an 3 additional weeks, the mice were harvested for histologic, histomorphometric, and histochemical staining analyses. RESULTS: Pulp exposure induced periapical radiolucency as shown by increased inflammatory cells, tartrate-resistant acid phosphatase-positive osteoclasts, and bone resorption. When BPs were administered, pulp exposure did not induce apical bone resorption despite the presence of inflammatory cells and tartrate-resistant acid phosphatase-positive osteoclasts. Although tooth extraction alone induced BRONJ lesions, pulp exposure further increased tooth extraction-induced BRONJ development as shown by the presence of more bone necrosis. CONCLUSIONS: Our study demonstrates that a preexisting pathological inflammatory condition such as periapical periodontitis is a predisposing factor that may exacerbate BRONJ development after tooth extraction. Our study further provides a clinical implication wherein periapical periodontitis should be controlled before performing tooth extraction in BP users in order to reduce the risk of developing BRONJ.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Periodontitis Periapical/patología , Extracción Dental/efectos adversos , Administración Intravenosa , Animales , Resorción Ósea/dietoterapia , Resorción Ósea/etiología , Resorción Ósea/patología , Difosfonatos/efectos adversos , Modelos Animales de Enfermedad , Femenino , Inflamación/patología , Maxilar/patología , Ratones , Ratones Endogámicos C57BL , Diente Molar/efectos de los fármacos , Diente Molar/patología , Osteoclastos/patología , Enfermedades Periapicales/complicaciones , Enfermedades Periapicales/patología , Ápice del Diente/efectos de los fármacos , Ápice del Diente/patología
20.
Oncotarget ; 7(28): 43239-43255, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27259269

RESUMEN

Emerging evidence indicates that Orai1, a key calcium channel for store-operated Ca2+ entry, is associated with human cancer. However, the underlying mechanism by which Orai1 regulates cancer progression remains unknown. Here we report that intracellular level of Orai1 is increased in a stepwise manner during oral/oropharyngeal carcinogenesis and highly expressed in cancer stem-like cell (CSC)-enriched populations of human oral/oropharyngeal squamous cell carcinoma (OSCC). Ectopic Orai1 expression converted non-tumorigenic immortalized oral epithelial cells to malignant cells that showed CSC properties, e.g., self-renewal capacity, increased ALDH1HIGH cell population, increased key stemness transcription factors, and enhanced mobility. Conversely, inhibition of Orai1 suppressed tumorigenicity and CSC phenotype of OSCC, indicating that Orai1 could be an important element for tumorigenicity and stemness of OSCC. Mechanistically, Orai1 activates its major downstream effector molecule, NFATc3. Knockdown of NFATc3 in the Orai1-overexpressing oral epithelial cells abrogates the effect of Orai1 on CSC phenotype. Moreover, antagonist of NFAT signaling also decreases CSC phenotype, implying the functional importance of Orai1/NFAT axis in OSCC CSC regulation. Our study identifies Orai1 as a novel molecular determinant for OSCC progression by enhancing cancer stemness, suggesting that inhibition of Orai1 signaling may offer an effective therapeutic modality against OSCC.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Factores de Transcripción NFATC/metabolismo , Proteína ORAI1/metabolismo , Neoplasias Orofaríngeas/patología , Familia de Aldehído Deshidrogenasa 1 , Animales , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Humanos , Inmunohistoquímica , Isoenzimas/metabolismo , Queratinocitos , Ratones , Ratones Desnudos , Microscopía Confocal , Mutación , Factores de Transcripción NFATC/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteína ORAI1/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Retinal-Deshidrogenasa/metabolismo , Transducción de Señal , Esferoides Celulares , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA