Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8512, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129377

RESUMEN

Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.


Asunto(s)
Células T Asesinas Naturales , Ratones , Animales , Células T Asesinas Naturales/metabolismo , Ratones Obesos , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Ratones Endogámicos C57BL
2.
Mol Cells ; 46(6): 345-347, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37288483
3.
Cell Rep ; 41(11): 111806, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516764

RESUMEN

In mammals, brown adipose tissue (BAT) is specialized to conduct non-shivering thermogenesis for survival under cold acclimation. Although emerging evidence suggests that lipid metabolites are essential for heat generation in cold-activated BAT, the underlying mechanisms of lipid uptake in BAT have not been thoroughly understood. Here, we show that very-low-density lipoprotein (VLDL) uptaken by VLDL receptor (VLDLR) plays important roles in thermogenic execution in BAT. Compared with wild-type mice, VLDLR knockout mice exhibit impaired thermogenic features. Mechanistically, VLDLR-mediated VLDL uptake provides energy sources for mitochondrial oxidation via lysosomal processing, subsequently enhancing thermogenic activity in brown adipocytes. Moreover, the VLDL-VLDLR axis potentiates peroxisome proliferator activated receptor (PPAR)ß/δ activity with thermogenic gene expression in BAT. Accordingly, VLDL-induced thermogenic capacity is attenuated in brown-adipocyte-specific PPARß/δ knockout mice. Collectively, these data suggest that the VLDL-VLDLR axis in brown adipocytes is a key factor for thermogenic execution during cold exposure.


Asunto(s)
Tejido Adiposo Pardo , PPAR-beta , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , PPAR-beta/metabolismo , Lipoproteínas VLDL/metabolismo , Termogénesis/genética , Adipocitos Marrones/metabolismo , Ratones Noqueados , Mamíferos
4.
Nat Metab ; 4(7): 918-931, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35788760

RESUMEN

DNA methylation is a crucial epigenetic modification in the establishment of cell-type-specific characteristics. However, how DNA methylation is selectively reprogrammed at adipocyte-specific loci during adipogenesis remains unclear. Here, we show that the transcription factor, C/EBPδ, and the DNA methylation eraser, TET3, cooperatively control adipocyte differentiation. We perform whole-genome bisulfite sequencing to explore the dynamics and regulatory mechanisms of DNA methylation in adipocyte differentiation. During adipogenesis, DNA methylation selectively decreases at adipocyte-specific loci carrying the C/EBP binding motif, which correlates with the activity of adipogenic promoters and enhancers. Mechanistically, we find that C/EBPδ recruits a DNA methylation eraser, TET3, to catalyse DNA demethylation at the C/EBP binding motif and stimulate the expression of key adipogenic genes. Ectopic expression of TET3 potentiates in vitro and in vivo adipocyte differentiation and recovers downregulated adipogenic potential, which is observed in aged mice and humans. Taken together, our study highlights how targeted reprogramming of DNA methylation through cooperative action of the transcription factor C/EBPδ, and the DNA methylation eraser TET3, controls adipocyte differentiation.


Asunto(s)
Adipogénesis , Dioxigenasas , Adipogénesis/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT , Diferenciación Celular/genética , Metilación de ADN , Dioxigenasas/genética , Epigénesis Genética , Humanos , Ratones , Factores de Transcripción/genética
5.
Nat Commun ; 13(1): 3268, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672324

RESUMEN

Thermogenic adipocytes generate heat to maintain body temperature against hypothermia in response to cold. Although tight regulation of thermogenesis is required to prevent energy sources depletion, the molecular details that tune thermogenesis are not thoroughly understood. Here, we demonstrate that adipocyte hypoxia-inducible factor α (HIFα) plays a key role in calibrating thermogenic function upon cold and re-warming. In beige adipocytes, HIFα attenuates protein kinase A (PKA) activity, leading to suppression of thermogenic activity. Mechanistically, HIF2α suppresses PKA activity by inducing miR-3085-3p expression to downregulate PKA catalytic subunit α (PKA Cα). Ablation of adipocyte HIF2α stimulates retention of beige adipocytes, accompanied by increased PKA Cα during re-warming after cold stimuli. Moreover, administration of miR-3085-3p promotes beige-to-white transition via downregulation of PKA Cα and mitochondrial abundance in adipocyte HIF2α deficient mice. Collectively, these findings suggest that HIF2α-dependent PKA regulation plays an important role as a thermostat through dynamic remodeling of beige adipocytes.


Asunto(s)
Adipocitos Beige , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , MicroARNs , Adipocitos , Adipocitos Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Frío , Ratones , MicroARNs/metabolismo , Termogénesis/genética
6.
Diabetes ; 69(1): 20-34, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604693

RESUMEN

Adipose tissue is the key organ coordinating whole-body energy homeostasis. Although it has been reported that ring finger protein 20 (RNF20) regulates lipid metabolism in the liver and kidney, the roles of RNF20 in adipose tissue have not been explored. Here, we demonstrate that RNF20 promotes adipogenesis by potentiating the transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ). Under normal chow diet feeding, Rnf20 defective (Rnf20 +/- ) mice exhibited reduced fat mass with smaller adipocytes compared with wild-type littermates. In addition, high-fat diet-fed Rnf20 +/- mice alleviated systemic insulin resistance accompanied by a reduced expansion of fat tissue. Quantitative proteomic analyses revealed significantly decreased levels of PPARγ target proteins in adipose tissue of Rnf20 +/- mice. Mechanistically, RNF20 promoted proteasomal degradation of nuclear corepressor 1 (NCoR1), which led to stimulation of the transcriptional activity of PPARγ. Collectively, these data suggest that RNF20-NCoR1 is a novel axis in adipocyte biology through fine-tuning the transcriptional activity of PPARγ.


Asunto(s)
Adipocitos/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , PPAR gamma/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Dieta Alta en Grasa , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , PPAR gamma/fisiología , Proteolisis , Transactivadores/genética , Transactivadores/fisiología , Ubiquitina-Proteína Ligasas/genética
7.
Genes Dev ; 33(23-24): 1657-1672, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31727774

RESUMEN

In obesity, adipose tissue undergoes dynamic remodeling processes such as adipocyte hypertrophy, hypoxia, immune responses, and adipocyte death. However, whether and how invariant natural killer T (iNKT) cells contribute to adipose tissue remodeling are elusive. In this study, we demonstrate that iNKT cells remove unhealthy adipocytes and stimulate the differentiation of healthy adipocytes. In obese adipose tissue, iNKT cells were abundantly found nearby dead adipocytes. FasL-positive adipose iNKT cells exerted cytotoxic effects to eliminate hypertrophic and pro-inflammatory Fas-positive adipocytes. Furthermore, in vivo adipocyte-lineage tracing mice model showed that activation of iNKT cells by alpha-galactosylceramide promoted adipocyte turnover, eventually leading to potentiation of the insulin-dependent glucose uptake ability in adipose tissue. Collectively, our data propose a novel role of adipose iNKT cells in the regulation of adipocyte turnover in obesity.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Muerte Celular/fisiología , Activación de Linfocitos/fisiología , Células T Asesinas Naturales/fisiología , Obesidad/fisiopatología , Células 3T3 , Adipocitos/inmunología , Adipocitos/metabolismo , Animales , Proliferación Celular , Proteína Ligando Fas/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor fas/metabolismo
8.
Mol Cell Biol ; 39(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308132

RESUMEN

Adipocytes have unique morphological traits in insulin sensitivity control. However, how the appearance of adipocytes can determine insulin sensitivity has not been understood. Here, we demonstrate that actin cytoskeleton reorganization upon lipid droplet (LD) configurations in adipocytes plays important roles in insulin-dependent glucose uptake by regulating GLUT4 trafficking. Compared to white adipocytes, brown/beige adipocytes with multilocular LDs exhibited well-developed filamentous actin (F-actin) structure and potentiated GLUT4 translocation to the plasma membrane in the presence of insulin. In contrast, LD enlargement and unilocularization in adipocytes downregulated cortical F-actin formation, eventually leading to decreased F-actin-to-globular actin (G-actin) ratio and suppression of insulin-dependent GLUT4 trafficking. Pharmacological inhibition of actin polymerization accompanied with impaired F/G-actin dynamics reduced glucose uptake in adipose tissue and conferred systemic insulin resistance in mice. Thus, our study reveals that adipocyte remodeling with different LD configurations could be an important factor to determine insulin sensitivity by modulating F/G-actin dynamics.


Asunto(s)
Actinas/metabolismo , Adipocitos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Gotas Lipídicas/metabolismo , Citoesqueleto de Actina/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/patología , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Respuesta al Choque por Frío , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glucosa/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Transporte de Proteínas
9.
Proc Natl Acad Sci U S A ; 116(24): 11936-11945, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31160440

RESUMEN

Accumulating evidence suggests that subcutaneous and visceral adipose tissues are differentially associated with metabolic disorders. In obesity, subcutaneous adipose tissue is beneficial for metabolic homeostasis because of repressed inflammation. However, the underlying mechanism remains unclear. Here, we demonstrate that γ-aminobutyric acid (GABA) sensitivity is crucial in determining fat depot-selective adipose tissue macrophage (ATM) infiltration in obesity. In diet-induced obesity, GABA reduced monocyte migration in subcutaneous inguinal adipose tissue (IAT), but not in visceral epididymal adipose tissue (EAT). Pharmacological modulation of the GABAB receptor affected the levels of ATM infiltration and adipose tissue inflammation in IAT, but not in EAT, and GABA administration ameliorated systemic insulin resistance and enhanced insulin-dependent glucose uptake in IAT, accompanied by lower inflammatory responses. Intriguingly, compared with adipose-derived stem cells (ADSCs) from EAT, IAT-ADSCs played key roles in mediating GABA responses that repressed ATM infiltration in high-fat diet-fed mice. These data suggest that selective GABA responses in IAT contribute to fat depot-selective suppression of inflammatory responses and protection from insulin resistance in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Inflamación/metabolismo , Obesidad/metabolismo , Células Madre/metabolismo , Tejido Subcutáneo/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adipocitos/metabolismo , Adiposidad/genética , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Insulina/metabolismo , Grasa Intraabdominal/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
10.
Nat Commun ; 8(1): 1087, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057873

RESUMEN

Obesity is closely associated with increased adipose tissue macrophages (ATMs), which contribute to systemic insulin resistance and altered lipid metabolism by creating a pro-inflammatory environment. Very low-density lipoprotein receptor (VLDLR) is involved in lipoprotein uptake and storage. However, whether lipid uptake via VLDLR in macrophages affects obesity-induced inflammatory responses and insulin resistance is not well understood. Here we show that elevated VLDLR expression in ATMs promotes adipose tissue inflammation and glucose intolerance in obese mice. In macrophages, VLDL treatment upregulates intracellular levels of C16:0 ceramides in a VLDLR-dependent manner, which potentiates pro-inflammatory responses and promotes M1-like macrophage polarization. Adoptive transfer of VLDLR knockout bone marrow to wild-type mice relieves adipose tissue inflammation and improves insulin resistance in diet-induced obese mice. These findings suggest that increased VLDL-VLDLR signaling in ATMs aggravates adipose tissue inflammation and insulin resistance in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Resistencia a la Insulina/inmunología , Macrófagos/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Receptores de LDL/metabolismo , Tejido Adiposo/inmunología , Animales , Western Blotting , Citometría de Flujo , Inmunohistoquímica , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Diabetes ; 65(9): 2624-38, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284106

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses.


Asunto(s)
Tejido Adiposo/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/inmunología , Obesidad/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo/inmunología , Animales , Western Blotting , Medios de Cultivo Condicionados , Dieta Alta en Grasa/efectos adversos , Ayuno/sangre , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Inmunohistoquímica , Insulina/sangre , Resistencia a la Insulina/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Mutantes , Obesidad/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Nat Commun ; 6: 7585, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26139044

RESUMEN

Adiponectin plays a key role in the regulation of the whole-body energy homeostasis by modulating glucose and lipid metabolism. Although obesity-induced reduction of adiponectin expression is primarily ascribed to a transcriptional regulation failure, the underlying mechanisms are largely undefined. Here we show that DNA hypermethylation of a particular region of the adiponectin promoter suppresses adiponectin expression through epigenetic control and, in turn, exacerbates metabolic diseases in obesity. Obesity-induced, pro-inflammatory cytokines promote DNMT1 expression and its enzymatic activity. Activated DNMT1 selectively methylates and stimulates compact chromatin structure in the adiponectin promoter, impeding adiponectin expression. Suppressing DNMT1 activity with a DNMT inhibitor resulted in the amelioration of obesity-induced glucose intolerance and insulin resistance in an adiponectin-dependent manner. These findings suggest a critical role of adiponectin gene epigenetic control by DNMT1 in governing energy homeostasis, implying that modulating DNMT1 activity represents a new strategy for the treatment of obesity-related diseases.


Asunto(s)
Adiponectina/genética , Citocinas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Resistencia a la Insulina/genética , Obesidad/genética , ARN Mensajero/metabolismo , Células 3T3-L1 , Tejido Adiposo/metabolismo , Animales , Western Blotting , Inmunoprecipitación de Cromatina , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Humanos , Inflamación , Ratones , Obesidad/metabolismo , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Leptina/genética
13.
Diabetes ; 63(10): 3359-71, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24947359

RESUMEN

In obesity, adipose tissue macrophages (ATMs) play a key role in mediating proinflammatory responses in the adipose tissue, which are associated with obesity-related metabolic complications. Recently, adipose tissue hypoxia has been implicated in the regulation of ATMs in obesity. However, the role of hypoxia-inducible factor (HIF)-2α, one of the major transcription factors induced by hypoxia, has not been fully elucidated in ATMs. In this study, we demonstrate that elevation of macrophage HIF-2α would attenuate adipose tissue inflammation and improve insulin resistance in obesity. In macrophages, overexpression of HIF-2α decreased nitric oxide production and suppressed expression of proinflammatory cytokines through induction of arginase 1. HIF-2α-overexpressing macrophages alleviated proinflammatory responses and improved insulin resistance in adipocytes. In contrast, knockdown of macrophage HIF-2α augmented palmitate-induced proinflammatory gene expression in adipocytes. Furthermore, compared with wild-type mice, Hif-2α heterozygous-null mice aggravated insulin resistance and adipose tissue inflammation with more M1-like ATMs upon high-fat diet (HFD). Moreover, glucose intolerance in HFD-fed Hif-2α heterozygous-null mice was relieved by macrophage depletion with clodronate treatment, implying that increase of proinflammatory ATMs is responsible for insulin resistance by haplodeficiency of Hif-2α upon HFD. Taken together, these data suggest that macrophage HIF-2α would counteract the proinflammatory responses to relieve obesity-induced insulin resistance in adipose tissue.


Asunto(s)
Tejido Adiposo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Macrófagos/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , ARN Interferente Pequeño
14.
Hepatology ; 57(4): 1366-77, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23152128

RESUMEN

UNLABELLED: Recent evidence suggests that obese animals exhibit increased endoplasmic reticulum (ER) stress in the liver and adipose tissue. Although ER stress is closely associated with lipid homeostasis, it is largely unknown how ER stress contributes to hepatic steatosis. In this study, we demonstrate that the induction of ER stress stimulates hepatic steatosis through increased expression of the hepatic very low-density lipoprotein receptor (VLDLR). Among the unfolded protein response sensors, the protein kinase RNA-like ER kinase-activating transcription factor 4 signaling pathway was required for hepatic VLDLR up-regulation. In primary hepatocytes, ER stress-dependent VLDLR expression induced intracellular triglyceride accumulation in the presence of very low-density lipoprotein. Moreover, ER stress-dependent hepatic steatosis was diminished in the livers of VLDLR-deficient and apolipoprotein E-deficient mice compared with wild-type mice. In addition, the VLDLR-deficient mice exhibited decreased hepatic steatosis upon high-fat diet feeding. CONCLUSION: These data suggest that ER stress-dependent expression of hepatic VLDLR leads to hepatic steatosis by increasing lipoprotein delivery to the liver, which might be a novel mechanism explaining ER stress-induced hepatic steatosis.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Hígado Graso/fisiopatología , Receptores de LDL/fisiología , Regulación hacia Arriba/fisiología , Factor de Transcripción Activador 4/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Lipoproteínas/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Receptores de LDL/deficiencia , Receptores de LDL/genética , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...