Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38667787

RESUMEN

Porphyran, a sulfated polysaccharide found in various species of marine red algae, has been demonstrated to exhibit diverse bioactivities, including anti-inflammatory effects. However, the protective effects of porphyran against cerebral ischemia and reperfusion (IR) injury have not been investigated. The aim of this study was to examine the neuroprotective effects of porphyran against brain IR injury and its underlying mechanisms using a gerbil model of transient forebrain ischemia (IR in the forebrain), which results in pyramidal cell (principal neuron) loss in the cornu ammonis 1 (CA1) subregion of the hippocampus on day 4 after IR. Porphyran (25 and 50 mg/kg) was orally administered daily for one week prior to IR. Pretreatment with 50 mg/kg of porphyran, but not 25 mg/kg, significantly attenuated locomotor hyperactivity and protected pyramidal cells located in the CA1 area from IR injury. The pretreatment with 50 mg/kg of porphyran significantly suppressed the IR-induced activation and proliferation of microglia in the CA1 subregion. Additionally, the pretreatment significantly inhibited the overexpressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing protein-3 (NLRP3) inflammasome complex, and pro-inflammatory cytokines (interleukin 1 beta and interleukin 18) induced by IR in the CA1 subregion. Overall, our findings suggest that porphyran exerts neuroprotective effects against brain IR injury, potentially by reducing the reaction (activation) and proliferation of microglia and reducing NLRP3 inflammasome-mediated neuroinflammation.


Asunto(s)
Región CA1 Hipocampal , Gerbillinae , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Daño por Reperfusión , Sefarosa/análogos & derivados , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Masculino , Daño por Reperfusión/tratamiento farmacológico , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Modelos Animales de Enfermedad , Microglía/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Polisacáridos/farmacología , Neuronas/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542434

RESUMEN

Aucubin, an iridoid glycoside, possesses beneficial bioactivities in many diseases, but little is known about its neuroprotective effects and mechanisms in brain ischemia and reperfusion (IR) injury. This study evaluated whether aucubin exhibited neuroprotective effects against IR injury in the hippocampal CA1 region through anti-inflammatory activity in gerbils. Aucubin (10 mg/kg) was administered intraperitoneally once a day for one week prior to IR. Neuroprotective effects of aucubin were assessed by neuronal nuclei (NeuN) immunofluorescence and Floro-Jade C (FJC) histofluorescence. Microgliosis and astrogliosis were evaluated using immunohistochemistry with anti-ionized calcium binding adapter protein 1 (Iba1) and glial fibrillary acidic protein (GFAP). Protein levels of proinflammatory cytokines interleukin1 beta (IL1ß) and tumor necrosis factor alpha (TNFα) were assayed using enzyme-linked immunosorbent assay and Western blot. Changes in toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway were assessed by measuring levels of TLR4, inhibitor of NF-κB alpha (IκBα), and NF-κB p65 using Western blot. Aucubin treatment protected pyramidal neurons from IR injury. IR-induced microgliosis and astrogliosis were suppressed by aucubin treatment. IR-induced increases in IL1ß and TNFα levels were significantly alleviated by the treatment. IR-induced upregulation of TLR4 and downregulation of IκBα were significantly prevented by aucubin treatment, and IR-induced nuclear translocation of NF-κB was reversed by aucubin treatment. Briefly, aucubin exhibited neuroprotective effects against brain IR injury, which might be related to the attenuation of neuroinflammation through inhibiting the TLR-4/NF-κB signaling pathway. These results suggest that aucubin pretreatment may be a potential approach for the protection of brain IR injury.


Asunto(s)
Isquemia Encefálica , Glucósidos Iridoides , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Inhibidor NF-kappaB alfa/metabolismo , Gerbillinae/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 4/metabolismo , Gliosis , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia , Infarto Cerebral , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
3.
J Integr Neurosci ; 22(2): 26, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36992594

RESUMEN

BACKGROUND: A gerbil model of ischemia and reperfusion (IR) injury in the forebrain has been developed for studies on mechanisms, prevention and therapeutic strategies of IR injury in the forebrain. Pycnogenol® (PYC), a standardized extract of French maritime pine tree (Pinus pinaster Aiton) has been exploited as an additive for dietary supplement. In the present study, we investigated the neuroprotective effects of post-treatment with PYC and its therapeutic mechanisms in gerbils. METHODS: The gerbils were given sham and IR operation and intraperitoneally injected with vehicle and Pycnogenol® (25, 50 and 100 mg/kg, respectively) immediately, at 24 hours and 48 hours after sham and IR operation. Through 8-arm radial maze test and passive avoidance test, each spatial memory and short-term memory function was assessed. To examine the neuroprotection of Pycnogenol®, we conducted cresyl violet staining, immunohistochemistry for neuronal nuclei, and Fluoro-Jade B histofluorescence. Moreover, we carried out immunohistochemistry for immunoglobulin G (IgG) to investigate blood-brain barrier (BBB) leakage and interleukin-1ß (IL-1ß) to examine change in pro-inflammatory cytokine. RESULTS: We found that IR-induced memory deficits were significantly ameliorated when 100 mg/kg Pycnogenol® was treated. In addition, treatment with 100 mg/kg Pycnogenol®, not 25 mg/kg nor 50 mg/kg, conferred neuroprotective effect against IR injury. For its mechanisms, we found that 100 mg/kg Pycnogenol® significantly reduced BBB leakage and inhibited the expression of IL-1ß. CONCLUSIONS: Therapeutic treatment (post-treatment) with Pycnogenol® after IR effectively attenuated ischemic brain injury in gerbils. Based on these results, we suggest that PYC can be employed as an important material for ischemic drugs.


Asunto(s)
Lesiones Encefálicas , Disfunción Cognitiva , Fármacos Neuroprotectores , Animales , Gerbillinae , Barrera Hematoencefálica , Enfermedades Neuroinflamatorias , Hipocampo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Fármacos Neuroprotectores/farmacología
4.
Cells ; 12(3)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766758

RESUMEN

Cardiac arrest (CA) and return of spontaneous circulation (ROSC), a global ischemia and reperfusion event, lead to neuronal damage and/or death in the spinal cord as well as the brain. Hypothermic therapy is reported to protect neurons from damage and improve hindlimb paralysis after resuscitation in a rat model of CA induced by asphyxia. In this study, we investigated roles of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the lumbar spinal cord protected by therapeutic hypothermia in a rat model of asphyxial CA. Male Sprague-Dawley rats were subjected to seven minutes of asphyxial CA (induced by injection of 2 mg/kg vecuronium bromide) and hypothermia (four hours of cooling, 33 ± 0.5 °C). Survival rate, hindlimb motor function, histopathology, western blotting, and immunohistochemistry were examined at 12, 24, and 48 h after CA/ROSC. The rats of the CA/ROSC and hypothermia-treated groups had an increased survival rate and showed an attenuated hindlimb paralysis and a mild damage/death of motor neurons located in the anterior horn of the lumbar spinal cord compared with those of the CA/ROSC and normothermia-treated groups. In the CA/ROSC and hypothermia-treated groups, expressions of cytoplasmic and nuclear Nrf2 and HO-1 were significantly higher in the anterior horn compared with those of the CA/ROSC and normothermia-treated groups, showing that cytoplasmic and nuclear Nrf2 was expressed in both motor neurons and astrocytes. Moreover, in the CA/ROSC and hypothermia-treated group, interleukin-1ß (IL-1ß, a pro-inflammatory cytokine) expressed in the motor neurons was significantly reduced, and astrocyte damage was apparently attenuated compared with those found in the CA/ROSC and normothermia group. Taken together, our results indicate that hypothermic therapy after CA/ROSC attenuates CA-induced hindlimb paralysis by protecting motor neurons in the lumbar spinal cord via activating the Nrf2/HO-1 signaling pathway and attenuating pro-inflammation and astrocyte damage (reactive astrogliosis).


Asunto(s)
Paro Cardíaco , Hipotermia Inducida , Hipotermia , Animales , Masculino , Ratas , Astrocitos/metabolismo , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Hemo-Oxigenasa 1/metabolismo , Miembro Posterior/metabolismo , Hipotermia/metabolismo , Hipotermia Inducida/métodos , Neuronas Motoras/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Parálisis , Ratas Sprague-Dawley , Transducción de Señal
5.
Antioxidants (Basel) ; 11(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36552657

RESUMEN

Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.

6.
Exp Ther Med ; 24(4): 635, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36160902

RESUMEN

Oxidative stress is strongly implicated in the pathogenesis of Parkinson's disease (PD) through degeneration of dopaminergic neurons. The present study was designed to investigate the underlying mechanisms and therapeutic potential of Brain Factor-7® (BF-7®), a natural compound in silkworm, in a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was intraperitoneally injected into mice to cause symptoms of PD. Mice were orally administered BF-7® (a mixture of silk peptides) before and after MPTP treatment. Rotarod performance test was used to assess motor performance. Fluoro-Jade B staining for neurons undergoing degeneration and immunohistochemistry of tyrosine hydroxylase for dopaminergic neurons, 4-hydroxy-2-nonenal (4HNE) for lipid peroxidation, 8-hydroxy-2'-deoxyguanosine (8OHdG) for DNA damage and superoxide dismutase (SOD) 1 and SOD2 for antioxidative enzymes in the pars compacta of the substantia nigra were performed. Results showed that BF-7® treatment significantly improved MPTP-induced motor deficit and protected MPTP-induced dopaminergic neurodegeneration. Furthermore, BF-7® treatment significantly ameliorated MPTP-induced oxidative stress. Increased 4HNE and 8OHdG immunoreactivities induced by MPTP were significantly reduced by BF-7®, whereas SOD1 and SOD2 immunoreactivities decreased by MPTP were significantly enhanced by BF-7®. In conclusion, BF-7® exerted protective and/or therapeutic effects in a mouse model of PD by decreasing effects of oxidative stress on dopaminergic neurons in the substantia nigra pars compacta.

7.
Mar Drugs ; 20(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35447940

RESUMEN

Astaxanthin is a powerful biological antioxidant and is naturally generated in a great variety of living organisms. Some studies have demonstrated the neuroprotective effects of ATX against ischemic brain injury in experimental animals. However, it is still unknown whether astaxanthin displays neuroprotective effects against severe ischemic brain injury induced by longer (severe) transient ischemia in the forebrain. The purpose of this study was to evaluate the neuroprotective effects of astaxanthin and its antioxidant activity in the hippocampus of gerbils subjected to 15-min transient forebrain ischemia, which led to the massive loss (death) of pyramidal cells located in hippocampal cornu Ammonis 1-3 (CA1-3) subfields. Astaxanthin (100 mg/kg) was administered once daily for three days before the induction of transient ischemia. Treatment with astaxanthin significantly attenuated the ischemia-induced loss of pyramidal cells in CA1-3. In addition, treatment with astaxanthin significantly reduced ischemia-induced oxidative DNA damage and lipid peroxidation in CA1-3 pyramidal cells. Moreover, the expression of the antioxidant enzymes superoxide dismutase (SOD1 and SOD2) in CA1-3 pyramidal cells were gradually and significantly reduced after ischemia. However, in astaxanthin-treated gerbils, the expression of SOD1 and SOD2 was significantly high compared to in-vehicle-treated gerbils before and after ischemia induction. Collectively, these findings indicate that pretreatment with astaxanthin could attenuate severe ischemic brain injury induced by 15-min transient forebrain ischemia, which may be closely associated with the decrease in oxidative stress due to astaxanthin pretreatment.


Asunto(s)
Lesiones Encefálicas , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo , Isquemia/metabolismo , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Superóxido Dismutasa-1/metabolismo , Xantófilas
8.
Int J Mol Med ; 49(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35234273

RESUMEN

The hippocampus has a different vulnerability to ischemia according to the subfields CA1 to CA3 (initials of cornu ammonis). It has been reported that body temperature changes during ischemia affect the degree of neuronal death following transient ischemia. Hypoxia­inducible factor 1α (HIF­1α) plays a key role in regulating cellular adaptation to low oxygen conditions. In the present study, we investigated the pattern of neuronal death (loss) in CA1 and CA2/3 following 5 min transient forebrain ischemia (TFI) under hyperthermia (39.5±0.2˚C) and the relationship between neuronal death and changes in HIF­1α expression using western blot analysis and immunohistochemistry in gerbils. Normothermia or hyperthermia was induced for 30 min before and during the TFI, and neuronal death and HIF­1α expression were observed at 0, 3, 6 and 12 h, 1, 2 and 5 days after TFI. Under normothermia, TFI­induced neuronal death of CA1 pyramidal neurons occurred on day 5 after TFI, but CA2/3 pyramidal neurons did not die. In contrast, under hyperthermia, the death of CA1 and CA2/3 pyramidal neurons was observed on day 2 after TFI. Under normothermia, HIF­1α expression was significantly elevated in both CA1 and CA2/3 pyramidal neurons at 12 h and 1 day after TFI, and the increased HIF­1α immunoreactivity in CA1 was dramatically reduced from 2 days after TFI, but not in CA2/3 pyramidal neurons. Under hyperthermia, the basal expression of HIF­1α in the sham group was significantly higher in both CA1 and CA2/3 pyramidal neurons at 0 h after TFI than in the normothermia group. HIF­1 expression was continuously higher, peaked at 12 h after TFI, and then significantly decreased from 1 day after TFI. Overall, the present results indicate that resistance to ischemia in CA2/3 pyramidal neurons is closely associated with the persistence of increased expression of HIF­1α after ischemic insults and that hyperthermia­induced exacerbation of death of pyramidal neurons is closely related to decreased HIF­1α expression after ischemic insults.


Asunto(s)
Hipocampo , Hipertermia Inducida , Animales , Gerbillinae/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Células Piramidales/metabolismo
9.
Korean J Physiol Pharmacol ; 26(1): 47-57, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965995

RESUMEN

Stiripentol is an anti-epileptic drug for the treating of refractory status epilepticus. It has been reported that stiripentol can attenuate seizure severity and reduce seizure-induced neuronal damage in animal models of epilepsy. The objective of the present study was to investigate effects of post-treatment with stiripentol on cognitive deficit and neuronal damage in the cornu ammonis 1 (CA1) region of the hippocampus proper following transient ischemia in the forebrain of gerbils. To evaluate ischemia-induced cognitive impairments, passive avoidance test and 8-arm radial maze test were performed. It was found that post-treatment with stiripentol at 20 mg/kg, but not 10 or 15 mg/kg, reduced ischemia-induced memory impairment. Transient ischemia-induced neuronal death in the CA1 region was also significantly attenuated only by 20 mg/kg stiripentol treatment after transient ischemia. In addition, 20 mg/kg stiripentol treatment significantly decreased ischemia-induced astrocyte damage and immunoglobulin G leakage. In brief, stiripentol treatment after transient ischemia ameliorated transient ischemia-induced cognitive impairment in gerbils, showing that pyramidal neurons were protected and astrocyte damage and blood brain barrier leakage were significantly attenuated in the hippocampus. Results of this study suggest stiripentol can be developed as a candidate of therapeutic drug for ischemic stroke.

10.
Vet Sci ; 8(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34679060

RESUMEN

Cardiac arrest (CA) causes severe spinal cord injury and evokes spinal cord disorders including paraplegia. It has been reported that risperidone, an antipsychotic drug, effectively protects neuronal cell death from transient ischemia injury in gerbil brains. However, until now, studies on the effects of risperidone on spinal cord injury after asphyxial CA (ACA) and cardiopulmonary resuscitation (CPR) are not sufficient. Therefore, this study investigated the effect of risperidone on hind limb motor deficits and neuronal damage/death in the lumbar part of the spinal cord following ACA in rats. Mortality, severe motor deficits in the hind limbs, and the damage/death (loss) of motor neurons located in the anterior horn were observed two days after ACA/CPR. These symptoms were significantly alleviated by risperidone (an atypical antipsychotic) treatment after ACA. In vehicle-treated rats, the immunoreactivities of tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1ß), as pro-inflammatory cytokines, were increased, and the immunoreactivities of IL-4 and IL-13, as anti-inflammatory cytokines, were reduced with time after ACA/CPR. In contrast, in risperidone-treated rats, the immunoreactivity of the pro-inflammatory cytokines was significantly decreased, and the anti-inflammatory cytokines were enhanced compared to vehicle-treated rats. In brief, risperidone treatment after ACA/CPR in rats significantly improved the survival rate and attenuated paralysis, the damage/death (loss) of motor neurons, and inflammation in the lumbar anterior horn. Thus, risperidone might be a therapeutic agent for paraplegia by attenuation of the damage/death (loss) of spinal motor neurons and neuroinflammation after ACA/CPR.

11.
Biology (Basel) ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439951

RESUMEN

Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.

12.
Neurochem Res ; 46(11): 2852-2866, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34050880

RESUMEN

Transient ischemia in the brain causes blood-brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Región CA1 Hipocampal/metabolismo , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Ataque Isquémico Transitorio/metabolismo , Neuronas/metabolismo , Animales , Barrera Hematoencefálica/patología , Región CA1 Hipocampal/patología , Muerte Celular/fisiología , Citocinas/genética , Expresión Génica , Gerbillinae , Ataque Isquémico Transitorio/genética , Ataque Isquémico Transitorio/patología , Masculino , Neuronas/patología , Índice de Severidad de la Enfermedad
13.
Exp Ther Med ; 21(6): 626, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33968162

RESUMEN

Hypothermic treatment is known to protect against cardiac arrest (CA) and improve survival rate. However, few studies have evaluated the CA-induced liver damage and the effects of hypothermia on this damage. Therefore, the aim of the present study was to determine possible protective effects of hypothermia on the liver after asphyxial CA. Rats were subjected to a 5-min asphyxial CA followed by return of spontaneous circulation (ROSC). The body temperature was controlled at 37±0.5˚C (normothermia group) or 33±0.5˚C (hypothermia group) for 4 h after ROSC. Livers were examined at 6, 12 h, 1 and 2 days after ROSC. Histopathological examination was performed by H&E staining. Alterations in the expression levels of pro-inflammatory (TNF-α and interleukin IL-2) and anti-inflammatory cytokines (IL-4 and IL-13) were investigated by immunohistochemistry. Sinusoidal dilatation and vacuolization were observed after asphyxial CA by histopathological examination. However, these CA-induced structural alterations were prevented by hypothermia. In immunohistochemical examination, the expression levels of pro-inflammatory cytokines were reduced in the hypothermia group compared with those in the normothermia group while the expression levels of anti-inflammatory cytokines were increased in the hypothermia group compared with those in the normothermia group. In conclusion, hypothermic treatment for 4 h following asphyxial CA in rats inhibited the increase of pro-inflammatory cytokines and stimulated the expression of anti-inflammatory cytokines compared with the normothermic group. The results of the present study suggested that hypothermic treatment after asphyxial CA reduced liver damage via the regulation of inflammation.

14.
Mol Med Rep ; 23(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33537826

RESUMEN

Altered expression levels of N­methyl­D­aspartate receptor (NMDAR), a ligand­gated ion channel, have a harmful effect on cellular survival. Hyperthermia is a proven risk factor of transient forebrain ischemia (tFI) and can cause extensive and severe brain damage associated with mortality. The objective of the present study was to investigate whether hyperthermic preconditioning affected NMDAR1 immunoreactivity associated with deterioration of neuronal function in the gerbil hippocampal CA1 region following tFI via histological and western blot analyses. Hyperthermic preconditioning was performed for 1 h before tFI, which was developed by ligating common carotid arteries for 5 min. tFI­induced cognitive impairment under hyperthermia was worse compared with that under normothermia. Loss (death) of pyramidal neurons in the CA1 region occurred fast and was more severe under hyperthermia compared with that under normothermia. NMDAR1 immunoreactivity was not observed in the somata of pyramidal neurons of sham gerbils with normothermia. However, its immunoreactivity was strong in the somata and processes at 12 h post­tFI. Thereafter, NMDAR1 immunoreactivity decreased with time after tFI. On the other hand, NMDAR1 immunoreactivity under hyperthermia was significantly increased in the somata and processes at 6 h post­tFI. The change pattern of NMDAR1 immunoreactivity under hyperthermia was different from that under normothermia. Overall, accelerated tFI­induced neuronal death under hyperthermia may be closely associated with altered NMDAR1 expression compared with that under normothermia.


Asunto(s)
Isquemia Encefálica/metabolismo , Regulación de la Expresión Génica , Hipocampo/metabolismo , Hipertermia Inducida , Trastornos de la Memoria/metabolismo , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Animales , Isquemia Encefálica/patología , Muerte Celular , Gerbillinae , Hipocampo/patología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Neuronas , Prosencéfalo/patología
15.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498705

RESUMEN

It has been reported that CD200 (Cluster of Differentiation 200), expressed in neurons, regulates microglial activation in the central nervous system, and a decrease in CD200 expression causes an increase in microglial activation and neuronal loss. The aim of this study was to investigate time-dependent changes in CD200 expression in the hippocampus proper (CA1, 2, and 3 fields) after transient forebrain ischemia for 5 min in gerbils. In this study, 5-min ischemia evoked neuronal death (loss) of pyramidal neurons in the CA1 field, but not in the CA2/3 fields, at 5 days postischemia. In the sham group, CD200 expression was found in pyramidal neurons of the CA1 field, and the immunoreactivity in the group with ischemia was decreased at 6 h postischemia, dramatically increased at 12 h postischemia, decreased (to level found at 6 h postischemia) at 1 and 2 days postischemia, and significantly increased again at 5 days postischemia. At 5 days postischemia, CD200 immunoreactivity was strongly expressed in microglia and GABAergic neurons. However, in the CA3 field, the change in CD200 immunoreactivity in pyramidal neurons was markedly weaker than that in the CA1 field, showing there was no expression of CD 200 in microglia and GABAergic neurons. In addition, treatment of 10 mg/kg risperidone (an atypical antipsychotic drug) after the ischemia hardly changed CD200 immunoreactivity in the CA1 field, showing that CA1 pyramidal neurons were protected from the ischemic injury. These results indicate that the transient ischemia-induced change in CD200 expression may be associated with specific and selective neuronal death in the hippocampal CA1 field following transient forebrain ischemia.


Asunto(s)
Antígenos CD/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Ataque Isquémico Transitorio/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Risperidona/farmacología , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Gerbillinae , Ataque Isquémico Transitorio/patología , Masculino , Microglía/patología , Prosencéfalo/irrigación sanguínea , Prosencéfalo/patología , Células Piramidales/efectos de los fármacos , Células Piramidales/patología
16.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440708

RESUMEN

Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood-brain barrier, which triggers gliosis after ischemic insults.


Asunto(s)
Calbindina 1/genética , Ayuno , Expresión Génica , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Animales , Calbindina 1/inmunología , Muerte Celular/genética , Muerte Celular/inmunología , Gerbillinae , Gliosis/etiología , Inmunoglobulina G/inmunología , Masculino , Neuronas/metabolismo , Neuronas/patología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología
17.
Cells ; 10(1)2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401719

RESUMEN

Autonomic dysfunction in the central nervous system (CNS) can cause death after recovery from a cardiac arrest (CA). However, few studies on histopathological changes in animal models of CA have been reported. In this study, we investigated the prevalence of neuronal death and damage in various brain regions and the spinal cord at early times after asphyxial CA and we studied the relationship between the mortality rate and neuronal damage following hypothermic treatment after CA. Rats were subjected to 7-8 min of asphyxial CA, followed by resuscitation and prompt hypothermic treatment. Eight regions related to autonomic control (the cingulate cortex, hippocampus, thalamus, hypothalamus, myelencephalon, and spinal cord) were examined using cresyl violet (a marker for Nissl substance) and Fluoro-Jade B (a marker for neuronal death). The survival rate was 44.5% 1 day post-CA, 18.2% 2 days post-CA and 0% 5 days post-CA. Neuronal death started 12 h post-CA in the gigantocellular reticular nucleus and caudoventrolateral reticular nucleus in the myelencephalon and lamina VII in the cervical, thoracic, lumbar, and sacral spinal cord, of which neurons are related to autonomic lower motor neurons. In these regions, Iba-1 immunoreactivity indicating microglial activation (microgliosis) was gradually increased with time after CA. Prompt hypothermic treatment increased the survival rate at 5 days after CA with an attenuation of neuronal damages and death in the damaged regions. However, the survival rate was 0% at 12 days after CA. Taken together, our study suggests that the early damage and death of neurons related to autonomic lower motor neurons was significantly related to the high mortality rate after CA and that prompt hypothermic therapy could increase the survival rate temporarily after CA, but could not ultimately save the animal.


Asunto(s)
Sistema Nervioso Autónomo/patología , Sistema Nervioso Central/patología , Paro Cardíaco/patología , Hipotermia Inducida , Neuronas/patología , Animales , Antígenos Nucleares/metabolismo , Muerte Celular , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Ratas Sprague-Dawley , Análisis de Supervivencia , Factores de Tiempo
18.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008663

RESUMEN

In the present study, we investigated the neuroprotective effect of post-ischemic treatment with oxcarbazepine (OXC; an anticonvulsant compound) against ischemic injury induced by transient forebrain ischemia and its mechanisms in gerbils. Transient ischemia was induced in the forebrain by occlusion of both common carotid arteries for 5 min under normothermic conditions (37 ± 0.2 °C). The ischemic gerbils were treated with vehicle, hypothermia (whole-body cooling; 33.0 ± 0.2 °C), or 200 mg/kg OXC. Post-ischemic treatments with vehicle and hypothermia failed to attenuate and improve, respectively, ischemia-induced hyperactivity and cognitive impairment (decline in spatial and short-term memory). However, post-ischemic treatment with OXC significantly attenuated the hyperactivity and the cognitive impairment, showing that OXC treatment significantly reduced body temperature (to about 33 °C). When the hippocampus was histopathologically examined, pyramidal cells (principal neurons) were dead (lost) in the subfield Cornu Ammonis 1 (CA1) of the gerbils treated with vehicle and hypothermia on Day 4 after ischemia, but these cells were saved in the gerbils treated with OXC. In the gerbils treated with OXC after ischemia, the expression of transient receptor potential vanilloid type 1 (TRPV1; one of the transient receptor potential cation channels) was significantly increased in the CA1 region compared with that in the gerbils treated with vehicle and hypothermia. In brief, our results showed that OXC-induced hypothermia after transient forebrain ischemia effectively protected against ischemia-reperfusion injury through an increase in TRPV1 expression in the gerbil hippocampal CA1 region, indicating that TRPV1 is involved in OXC-induced hypothermia.


Asunto(s)
Hipotermia Inducida , Isquemia/terapia , Neuroprotección , Fármacos Neuroprotectores/uso terapéutico , Oxcarbazepina/uso terapéutico , Prosencéfalo/patología , Canales Catiónicos TRPV/metabolismo , Animales , Temperatura Corporal/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Cognición/efectos de los fármacos , Gerbillinae , Hipocampo/efectos de los fármacos , Hipocampo/patología , Isquemia/patología , Isquemia/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Oxcarbazepina/farmacología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/fisiopatología
19.
Nutrients ; 12(8)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824513

RESUMEN

Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.


Asunto(s)
Antioxidantes , Región CA1 Hipocampal/citología , Suplementos Dietéticos , Flavonoides/administración & dosificación , Flavonoides/farmacología , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/patología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Animales , Catalasa/metabolismo , Modelos Animales de Enfermedad , Gerbillinae , Peroxidación de Lípido/efectos de los fármacos , Masculino , Células Piramidales/enzimología , Superóxido Dismutasa/metabolismo
20.
Molecules ; 25(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781658

RESUMEN

Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is among the phenolic acid compounds which can be naturally found in green coffee extract and tea. CGA has been studied since it displays significant pharmacological properties. The aim of this study was to investigate the effects of CGA on cognitive function and neuroprotection including its mechanisms in the hippocampus following transient forebrain ischemia in gerbils. Memory and learning following the ischemia was investigated by eight-arm radial maze and passive avoidance tests. Neuroprotection was examined by immunohistochemistry for neuronal nuclei-specific protein and Fluoro-Jade B histofluorescence staining. For mechanisms of the neuroprotection, alterations in copper, zinc-superoxide dismutase (SOD1), SOD2 as antioxidant enzymes, dihydroethidium and 4-hydroxy-2-nonenal as indicators for oxidative stress, and anti-inflammatory cytokines (interleukin (IL)-4 and IL-13) and pro-inflammatory cytokines (tumor necrosis factor α (TNF-α) and IL-2) were examined by Western blotting and/or immunohistochemistry. As a result, pretreatment with 30 mg/kg CGA attenuated cognitive impairment and displayed a neuroprotective effect against transient forebrain ischemia (TFI). In Western blotting, the expression levels of SOD2 and IL-4 were increased due to pretreatment with CGA and, furthermore, 4-HNE production and IL-4 expressions were inhibited by CGA pretreatment. Additionally, pretreated CGA enhanced antioxidant enzymes and anti-inflammatory cytokines and, in contrast, attenuated oxidative stress and pro-inflammatory cytokine expression. Based on these results, we suggest that CGA can be a useful neuroprotective material against ischemia-reperfusion injury due to its antioxidant and anti-inflammatory efficacies.


Asunto(s)
Ácido Clorogénico/farmacología , Cognición/efectos de los fármacos , Hipocampo/patología , Isquemia/patología , Isquemia/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Aldehídos/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Hipocampo/efectos de los fármacos , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Isquemia/metabolismo , Ratones , Fármacos Neuroprotectores/farmacología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...