Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 10(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35632468

RESUMEN

Several COVID-19 platforms have been licensed across the world thus far, but vaccine platform research that can lead to effective antigen delivery is still ongoing. Here, we constructed AdCLD-CoV19 that could modulate humoral immunity by harboring SARS-CoV-2 antigens onto a chimeric adenovirus 5/35 platform that was effective in cellular immunity. By replacing the S1/S2 furin cleavage sequence of the SARS-CoV-2 Spike (S) protein mounted on AdCLD-CoV19 with the linker sequence, high antigen expression was confirmed in various cell lines. The high levels of antigen expression contributed to antigen-specific antibody activity in mice and non-human primates (NHPs) with a single vaccination of AdCLD-CoV19. Furthermore, the adenovirus-induced Th1 immune response was specifically raised for the S protein, and these immune responses protected the NHP against live viruses. While AdCLD-CoV19 maintained neutralizing antibody activity against various SARS-CoV-2 variants, it was reduced to single vaccination for ß and ο variants, and the reduced neutralizing antibody activity was restored with booster shots. Hence, AdCLD-CoV19 can prevent SARS-CoV-2 with a single vaccination, and the new vaccine administration strategy that responds to various variants can maintain the efficacy of the vaccine.

2.
Mol Ther Oncolytics ; 24: 683-694, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35284627

RESUMEN

Elucidation of the interplay between viruses and host cells is crucial for taming viruses to benefit human health. Cancer therapy using adenovirus, called oncolytic virotherapy, is a promising treatment option but is not robust in all patients. In addition, inefficient replication of human adenovirus in mouse hampered the development of an in vivo model for preclinical evaluation of therapeutically engineered adenovirus. nc886 is a human non-coding RNA that suppresses Protein Kinase R (PKR), an antiviral protein. In this study, we have found that nc886 greatly promotes adenoviral gene expression and replication. Remarkably, the stimulatory effect of nc886 is not dependent on its function to inhibit PKR. Rather, nc886 facilitates the nuclear entry of adenovirus via modulating the kinesin pathway. nc886 is not conserved in mouse and, when xenogeneically expressed in mouse cells, promotes adenovirus replication. Our investigation has discovered a novel mechanism of how a host ncRNA plays a pro-adenoviral role. Given that nc886 expression is silenced in a subset of cancer cells, our study highlights that oncolytic virotherapy might be inefficient in those cells. Furthermore, our findings open future possibilities of harnessing nc886 to improve the efficacy of oncolytic adenovirus and to construct nc886-expressing transgenic mice as an animal model.

3.
Mol Ther Oncolytics ; 23: 138-150, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34703882

RESUMEN

CD200 is known as an immune checkpoint molecule that inhibits innate immune cell activation. Using a head and neck squamous cell carcinoma (HNSCC) model, we sought to determine whether localized delivery of adenovirus-expressing sCD200R1-Ig, the soluble extracellular domain of CD200R1, enhances antitumor immunity. Mouse-derived bone marrow cells and M1/M2-like macrophages were cocultured with tumor cells and analyzed for macrophage polarization. As an in vivo model, C57BL/6 mice were subcutaneously injected with MEER/CD200High cells, CD200-overexpressing mouse HNSCC cells. Adenovirus-expressing sCD200R1-Ig (Ad5sCD200R1) was designed, and its effect was tested. Components in the tumor-immune microenvironment (TIME) were quantified using flow cytometry. CD200 promoted tumor growth and induced the expression of immune-related genes, especially macrophage colony-stimulating factor (M-CSF). Interestingly, CD200 induced M2-like polarization both in vitro and in vivo. Consequently, CD200 recruited more regulatory T (Treg) cells and fewer CD8+ effector T cells. These effects were effectively abolished by local injection of Ad5sCD200R1. These protumor effects of CD200 were driven through the ß-catenin/NF-κB/M-CSF axis. CD200 upregulated PD-L1, and the combined targeting of CD200 and PD-1 thus showed synergy. The immune checkpoint CD200 upregulated immune-related genes through ß-catenin signaling, reprogrammed the TIME, and exerted protumor effects. Ad5sCD200R1 injection could be an effective targeted strategy to enhance antitumor immunoediting.

4.
Cancers (Basel) ; 11(10)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627350

RESUMEN

The membrane glycoprotein CD200 binds to its receptor CD200R1 and induces tolerance, mainly in cells of the myeloid lineage; however, information regarding its role in solid tumors is limited. Here, we investigated whether CD200 expression, which is enriched mainly in high-grade head and neck squamous cell carcinoma (HNSCC), correlates with cancer progression, particularly the epithelial-to-mesenchymal transition (EMT). The forced overexpression of CD200 in the HNSCC cell line, UMSCC84, not only increased the expression of EMT-related genes, but also enhanced invasiveness. The cleaved cytoplasmic domain of CD200 interacted with ß-catenin in the cytosol, was translocated to the nucleus, and eventually enhanced EMT-related gene expression. CD200 increased the invasiveness of mouse tonsillar epithelium immortalized with E6, E7, and Ras (MEER), a model of tonsillar squamous cell carcinoma. siRNA inhibition of CD200 or extracellular domain of CD200R1 down-regulated the expression of EMT-related genes and decreased invasiveness. Consistently, compared to CD200-null MEER tumors, subcutaneous CD200-expressing MEER tumors showed significantly increased metastatic migration into draining lymph nodes. Our study demonstrates a novel and unique role of CD200 in inducing EMT, suggesting the potential therapeutic target for blocking solid cancer progression.

5.
Oncotarget ; 8(31): 50500-50509, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881578

RESUMEN

To properly evaluate the biological effects of immunotherapy, it is critical to utilize a model of cancer in immune-competent mice. Currently, MBT-2 is the most common murine bladder cancer cell line used in orthotopic bladder cancer models, even though this cell type often has an inappropriate genetic mutation landscape. In these models, after tumors are detected with in vivo imaging, the mouse usually dies within two to three weeks due to post-renal azotemia caused by the rapidly growing mass. This event prohibits the evaluation of tumor behavior upon intravesical drug treatment. We explored whether an shRNA-induced decrease in the expression of the c-myc oncogene in MBT-2 cells could slow down their in vitro proliferation and in vivo tumor growth. We transduced MBT-2 cells with shRNA lentiviruses that bound c-myc, established MBT2.cMYCshRNA and confirmed the retardation of the growth of tumors implanted in C3H/He mice. Accordingly, this study suggests that this novel orthotopic bladder cancer model in immune-competent mice may be more appropriate for the analysis of the effects of the intravesical instillation of immunotherapeutic agents.

6.
Cancer Lett ; 372(1): 57-64, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26723876

RESUMEN

Circulating tumor cells serve as useful biomarkers with which to identify disease status associated with survival, metastasis and drug sensitivity. Here, we established a novel application for detecting PSA/PSMA-positive prostate cancer cells circulating in peripheral blood employing an adenovirus called Ad5/35E1aPSESE4. Ad5/35E1aPSESE4 utilized PSES, a chimeric enhancer derived from PSA/PSMA promoters that is highly active with and without androgen. A fluorescence signal mediated by GFP expression upon Ad5/35E1aPSESE4 infection was selectively amplified in PSA/PSMA-positive prostate cancer cells in vitro and ex vivo. Furthermore, for the in vivo model, blood drawn from TRAMP was tested for CTCs with Ad5/35E1aPSESE4 infection and was positive for CTCs at week 16. Validation was performed on patient blood at various clinical stages and found out 1-100 CTCs expressing GFP upon Ad5/35E1aPSESE4 infection. Interestingly, CTC from one patient was confirmed to be sensitive to docetaxel chemotherapeutic reagent and to abundantly express metastasis-related genes like MMP9, Cofilin1, and FCER1G through RNA-seq. Our study established that the usage of Ad5/35E1aPSESE4 is effective in marking PSA/PSMA-positive prostate cancer cells in patient blood to improve the efficacy of utilizing CTCs as a biomarker.


Asunto(s)
Adenoviridae/genética , Antígenos de Superficie/genética , Glutamato Carboxipeptidasa II/genética , Calicreínas/genética , Células Neoplásicas Circulantes , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/virología , Elementos Reguladores de la Transcripción , Transcripción Genética , Adenoviridae/metabolismo , Adulto , Animales , Antígenos de Superficie/metabolismo , Antineoplásicos/farmacología , Estudios de Casos y Controles , Línea Celular Tumoral , Progresión de la Enfermedad , Docetaxel , Regulación Neoplásica de la Expresión Génica , Regulación Viral de la Expresión Génica , Genes Reporteros , Glutamato Carboxipeptidasa II/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Humanos , Calicreínas/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Estadificación de Neoplasias , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Valor Predictivo de las Pruebas , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Reproducibilidad de los Resultados , Taxoides/farmacología , Factores de Tiempo , Células Tumorales Cultivadas , Replicación Viral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...