Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epidemiology ; 34(6): 897-905, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732880

RESUMEN

BACKGROUND: Oxidative stress plays an important role in the health impacts of both outdoor fine particulate air pollution (PM 2.5 ) and thermal stress. However, it is not clear how the oxidative potential of PM 2.5 may influence the acute cardiovascular effects of temperature. METHODS: We conducted a case-crossover study of hospitalization for cardiovascular events in 35 cities across Canada during the summer months (July-September) between 2016 and 2018. We collected three different metrics of PM 2.5 oxidative potential each month in each location. We estimated associations between lag-0 daily temperature (per 5ºC) and hospitalization for all cardiovascular (n = 44,876) and ischemic heart disease (n = 14,034) events across strata of monthly PM 2.5 oxidative potential using conditional logistical models adjusting for potential time-varying confounders. RESULTS: Overall, associations between lag-0 temperature and acute cardiovascular events tended to be stronger when outdoor PM 2.5 oxidative potential was higher. For example, when glutathione-related oxidative potential (OP GSH ) was in the highest tertile, the odds ratio (OR) for all cardiovascular events was 1.040 (95% confidence intervals [CI] = 1.004, 1.074) compared with 0.980 (95% CI = 0.943, 1.018) when OP GSH was in the lowest tertile. We observed a greater difference for ischemic heart disease events, particularly for older subjects (age >70 years). CONCLUSIONS: The acute cardiovascular health impacts of summer temperature variations may be greater when outdoor PM 2.5 oxidative potential is elevated. This may be particularly important for ischemic heart disease events.


Asunto(s)
Hospitalización , Isquemia Miocárdica , Humanos , Anciano , Estudios Cruzados , Temperatura , Canadá/epidemiología , Isquemia Miocárdica/epidemiología , Polvo , Estrés Oxidativo
2.
Epidemiology ; 33(6): 767-776, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165987

RESUMEN

BACKGROUND: Populations are simultaneously exposed to outdoor concentrations of oxidant gases (i.e., O 3 and NO 2 ) and fine particulate air pollution (PM 2.5 ). Since oxidative stress is thought to be an important mechanism explaining air pollution health effects, the adverse health impacts of oxidant gases may be greater in locations where PM 2.5 is more capable of causing oxidative stress. METHODS: We conducted a cohort study of 2 million adults in Canada between 2001 and 2016 living within 10 km of ground-level monitoring sites for outdoor PM 2.5 components and oxidative potential. O x exposures (i.e., the redox-weighted average of O 3 and NO 2 ) were estimated using a combination of chemical transport models, land use regression models, and ground-level data. Cox proportional hazards models were used to estimate associations between 3-year moving average O x and mortality outcomes across strata of transition metals and sulfur in PM 2.5 and three measures of PM 2.5 oxidative potential adjusting for possible confounding factors. RESULTS: Associations between O x and mortality were consistently stronger in regions with elevated PM 2.5 transition metal/sulfur content and oxidative potential. For example, each interquartile increase (6.27 ppb) in O x was associated with a 14.9% (95% CI = 13.0, 16.9) increased risk of nonaccidental mortality in locations with glutathione-related oxidative potential (OP GSH ) above the median whereas a 2.50% (95% CI = 0.600, 4.40) increase was observed in regions with OP GSH levels below the median (interaction P value <0.001). CONCLUSION: Spatial variations in PM 2.5 composition and oxidative potential may contribute to heterogeneity in the observed health impacts of long-term exposures to oxidant gases.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Gases , Glutatión , Humanos , Oxidantes , Oxidación-Reducción , Estrés Oxidativo , Material Particulado/análisis , Azufre
3.
Environ Health Perspect ; 129(10): 107005, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34644144

RESUMEN

BACKGROUND: We do not currently understand how spatiotemporal variations in the composition of fine particulate air pollution [fine particulate matter with aerodynamic diameter ≤2.5µm (PM2.5)] affects population health risks. However, recent evidence suggests that joint concentrations of transition metals and sulfate may influence the oxidative potential (OP) of PM2.5 and associated health impacts. OBJECTIVES: The purpose of the study was to evaluate how combinations of transition metals/OP and sulfur content in outdoor PM2.5 influence associations with acute cardiovascular events. METHODS: We conducted a national case-crossover study of outdoor PM2.5 and acute cardiovascular events in Canada between 2016 and 2017 (93,344 adult cases). Monthly mean transition metal and sulfur (S) concentrations in PM2.5 were determined prospectively along with estimates of OP using acellular assays for glutathione (OPGSH), ascorbate (OPAA), and dithiothreitol depletion (OPDTT). Conditional logistic regression models were used to estimate odds ratios (OR) [95% confidence intervals (CI)] for PM2.5 across strata of transition metals/OP and sulfur. RESULTS: Among men, the magnitudes of observed associations were strongest when both transition metal and sulfur content were elevated. For example, an OR of 1.078 (95% CI: 1.049, 1.108) (per 10µg/m3) was observed for cardiovascular events in men when both copper and S were above the median, whereas a weaker association was observed when both elements were below median values (OR=1.019, 95% CI: 1.007, 1.031). A similar pattern was observed for OP metrics. PM2.5 was not associated with acute cardiovascular events in women. DISCUSSION: The combined transition metal and sulfur content of outdoor PM2.5 influences the strength of association with acute cardiovascular events in men. Regions with elevated concentrations of both sulfur and transition metals in PM2.5 should be examined as priority areas for regulatory interventions. https://doi.org/10.1289/EHP9449.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Canadá/epidemiología , Enfermedades Cardiovasculares/epidemiología , Estudios Cruzados , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Femenino , Humanos , Masculino , Estrés Oxidativo , Material Particulado/análisis , Azufre
4.
Sci Total Environ ; 791: 147949, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119798

RESUMEN

Large marine vessels have historically used high-sulphur (S) residual fuel oil (RFO), with substantial airborne releases of sulphur dioxide (SO2) and fine particulate matter (PM2.5) enriched in vanadium (V), nickel (Ni) and other air pollutants. To address marine shipping air pollution, Canada and the United States have jointly implemented a North American Emissions Control Area (NA ECA) within which ships are regulated to use lower-sulphur marine fuel or equivalent SO2 scrubbers (i.e., 3.5% maximum fuel S reduced to 1% S in 2012 and 0.1% S in 2015). To investigate the effects of these regulations on local air quality, we examined changes in air pollutant (SO2, PM2.5, NO2, O3), and related PM2.5 components (V, Ni, sulphate) concentrations over 2010-2016 at the Canadian port cities of Halifax, Vancouver, Victoria, Montreal, and Quebec City. SO2 concentrations showed large statistically significant decreases at all sites (-28% to -83% mean hourly change), with the largest improvements in the coastal cities when the 0.1% fuel S regulation took effect. Statistically significant PM2.5 but smaller fractional reductions were also observed (-7% to -37% mean hourly change), reflecting the importance of non-marine PM sources. RFO marker species V and Ni in PM2.5 dramatically declined following regulation implementation, consistent with decreased RFO use likely indicating the switch to low-S distillate fuel oil rather than exhaust scrubbers for initial compliance. Significant changes in other pollutants with non-marine sources (NO2, O3) were not contemporaneous with the regulatory timeline. The large SO2 improvements in the port cities have reduced 1-h concentrations to <30 ppb, comparable to Canadian urban locations with few local SO2 sources and likely reducing health risks to susceptible populations such as asthmatics and the elderly. Our findings indicate that the implementation of the NA ECA improved air quality at Canadian port cities immediately following the requirement for lower-S fuel. These air quality improvements suggest that large-scale international benefits can result from implementation of the 2020 global low-S marine fuel regulations.


Asunto(s)
Contaminación del Aire , Monitoreo del Ambiente , Anciano , Contaminación del Aire/análisis , Canadá , Ciudades , Humanos , Azufre
5.
Transfusion ; 55(5): 972-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25403913

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is an emerging threat to the safety of blood transfusion. The aim of this study was to determine HEV immunoglobulin (Ig)G and RNA prevalence in Catalan blood donors. STUDY DESIGN AND METHODS: Nearly 10,000 samples were collected from anonymized, unpaid donors at the Banc de Sang i Teixits (Barcelona, Spain) from June to December 2013. For the serology study, a subset of 1082 donations was tested in parallel for HEV IgG using Wantai and Mikrogen enzyme-linked immunosorbent assay tests. Samples were tested individually (individual-donation nucleic acid test [ID-NAT]) for HEV RNA using the Procleix HEV assay (95% limit of detection 7.9 IU/mL). Procleix repeat-reactive donations were confirmed by an in-house real-time polymerase chain reaction (PCR) test. RESULTS: The prevalences of IgG anti-HEV in Catalan blood donors were 19.96% (Wantai assay) and 10.72% (Mikrogen assay). Screening of 9998 samples with the Procleix HEV assay yielded three real-time PCR-confirmed and IgM and IgG anti-HEV-positive donations with viral loads of 250, 564, and 2755 IU/mL. The donation with highest viral load was genotype 3f. HEV RNA positivity rate was one per 3333 donations (0.03%; 95% confidence interval, 0.01%-0.09%). CONCLUSION: The Procleix HEV ID-NAT screening system has provided evidence of HEV RNA presence in Catalan blood donors. Further data are needed to assess the impact of HEV infection in at-risk patients to design the best strategy to increase blood safety.


Asunto(s)
Virus de la Hepatitis E/genética , Virus de la Hepatitis E/patogenicidad , ARN Viral/genética , Adolescente , Adulto , Donantes de Sangre/estadística & datos numéricos , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Seroepidemiológicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...