Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 21841, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528722

RESUMEN

Polarimetry is a powerful characterization technique that uses a wealth of information from electromagnetic waves, including polarization. Using the rich information provided by polarimetry, it is being actively studied in biomedical fields such as cancer and tumor diagnosis. Despite its importance and potential in agriculture, polarimetry for living plants has not been well studied. A Stokes polarimetric imaging system was built to determine the correlation between the polarization states of the light passing through the leaf and the growth states of lettuce. The Stokes parameter s3 associated with circular polarization increased over time and was strongly correlated with the growth of lettuce seedlings. In the statistical analysis, the distribution of s3 followed the generalized extreme value (GEV) probability density function. Salt stress retarded plant growth, and the concentration of treated sodium chloride (NaCl) showed a negative correlation with the location parameter µ of GEV. The clear correlation reported here will open the possibility of polarization measurements on living plants, enabling real-time monitoring of plant health.


Asunto(s)
Luz , Desarrollo de la Planta , Análisis Espectral , Hojas de la Planta , Lactuca , Plantas
2.
Foods ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613336

RESUMEN

This study monitored changes in major carotenoids (lutein, ⍺-carotene, and ß-carotene), free sugars (fructose, glucose, and sucrose), ascorbic acid, vitamin E, phytosterols (campesterol, stigmasterol, and ß-sitosterol), fatty acid composition, total phenol content (TPC), total flavonoid content (TFC), total anthocyanin content, and antioxidant activities (AA); ferric-reducing antioxidant power (FRAP) and 2,2'-azino-bis (3-ethylbenzothiazoline-6sulfonic acid) [ABTS] assays, in the inner and outer root tissues of nine carrot genotypes with orange, white, and purple roots. The results showed a differential accumulation of bioactive compounds and antioxidant activities depending on root tissue and color. Carotenoids, free sugars, and total phytosterol contents were higher in genotypes with orange roots than in other genotypes. Ascorbic acid, TPC, TFC, total anthocyanin, and AA were highest in purple-colored carrots while vitamin E content was higher in white/purple carrots. Root color was highly related to the accumulation of individual carotenoids, vitamin E isomers, and total anthocyanin content most prominently among the analyzed bioactive compounds and AA. Free sugar and carotenoid contents were relatively higher in outer tissues than in inner tissues. Furthermore, ascorbic acid, TPC, TFC, and AA were statistically higher or similar in outer tissues when compared to inner tissues in all genotypes. In contrast, trends in vitamin E and phytosterol content were inconsistent between the inner and outer tissues, depending on the genotype. Although fatty acid composition was affected by both root color and tissue, the results were not significant. Thus, the phytochemical profile and content were highly dependent on root color and tissue in carrot genotypes. This may be useful in the food processing and pharmaceutical industries for the extraction of targeted bioactive compounds.

3.
Front Plant Sci ; 12: 786309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003172

RESUMEN

Chlorophyll fluorescence (CF) is used to measure the physiological status of plants affected by biotic and abiotic stresses. Therefore, we aimed to identify the changes in CF parameters in grafted watermelon seedlings exposed to salt, drought, and high and low temperatures. Grafted watermelon seedlings at the true three-leaf stage were subjected to salinity levels (0, 50, 100, 150, and 200 mM) and temperature [low (8°C), moderate (24°C), and high (40°C)] stresses for 12 days under controlled environmental conditions independently. Eight CF parameters were measured at 2-day intervals using the FluorCam machine quenching protocol of the FluorCam machine. The seedlings were also exposed to drought stress for 3 days independent of salinity and temperature stress; CF parameters were measured at 1-day intervals. In addition, growth parameters, proline, and chlorophyll content were evaluated in all three experiments. The CF parameters were differentially influenced depending on the type and extent of the stress conditions. The results showed a notable effect of salinity levels on CF parameters, predominantly in maximum quantum yield (Fv/Fm), non-photochemical quenching (NPQ), the ratio of the fluorescence decrease (Rfd), and quantum yield of non-regulated energy dissipation in PSII [Y(NO)]. High temperature had significant effects on Rfd and NPQ, whereas low temperature showed significant results in most CF parameters: Fv/Fm, Y(NO), NPQ, Rfd, the efficiency of excitation capture of open photosystem II (PSII) center (Fv'/Fm'), and effective quantum yield of photochemical energy conversion in PSII [Y(PSII)]. Only NPQ and Rfd were significantly influenced by severe drought stress. Approximately, all the growth parameters were significantly influenced by the stress level. Proline content increased with an increase in stress levels in all three experiments, whereas the chlorophyll (a and b) content either decreased or increased depending upon the stressor. The results provided here may be useful for understanding the effect of abiotic stresses on CF parameters and the selection of index CF parameters to detect abiotic stresses in grafted watermelon seedlings.

4.
Molecules ; 25(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316621

RESUMEN

Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively. GIB, GBS and NGBS were the most common GSLs found in all genotypes. GBS was the most dominant GSL, with an average value of 3.91 µmol g-1 (0.79 to 13.14 µmol g-1). SIN, GIB, PRO and GRA were the other major GSLs, showing average values of 3.45, 1.50, 0.77 and 0.62 µmol g-1, respectively. The genotypes with relatively high contents of GBS, SIN, GIB and GRA warrant detailed studies for future breeding programs since the hydrolysis products of these GSLs have several anti-cancer properties.


Asunto(s)
Brassica/química , Glucosinolatos/química , Semillas/química , Brassica/genética , Cromatografía Líquida de Alta Presión , Variación Genética , Genotipo , Indoles/química , Metabolómica/métodos , Fitomejoramiento , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...