Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 193(Pt 1): 319-329, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36272668

RESUMEN

Nitric oxide as a signaling molecule exerts cytotoxicity known as nitrosative stress at its excess concentrations. In the yeast Saccharomyces cerevisiae, the cellular responses to nitrosative stress and their molecular mechanisms are not fully understood. Here, focusing on the posttranslational modifications that are associated with nitrosative stress response, we show that nitrosative stress increased the protein S-glutathionylation level in yeast cells. Our proteomic and immunochemical analyses demonstrated that the fructose-1,6-bisphosphate aldolase Fba1 underwent S-glutathionylation at Cys112 in response to nitrosative stress. The enzyme assay using a recombinant Fba1 demonstrated that S-glutathionylation at Cys112 inhibited the Fba1 activity. Moreover, we revealed that the cytosolic glutaredoxin Grx1 reduced S-glutathionylation of Fba1 and then recovered its activity. The intracellular contents of fructose-1,6-bisphosphate and 6-phosphogluconate, which are a substrate of Fba1 and an intermediate of the pentose phosphate pathway (PPP), respectively, were increased in response to nitrosative stress, suggesting that the metabolic flow was switched from glycolysis to PPP. The cellular level of NADPH, which is produced in PPP and functions as a reducing force for nitric oxide detoxifying enzymes, was also elevated under nitrosative stress conditions, but this increase was canceled by the amino acid substitution of Cys112 to Ser in Fba1. Furthermore, the viability of yeast cells expressing Cys112Ser-Fba1 was significantly lower than that of the wild-type cells under nitrosative stress conditions. These results indicate that the inhibition of Fba1 by its S-glutathionylation changes metabolism from glycolysis to PPP to increase NADPH production, leading to nitrosative stress tolerance in yeast cells.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Proteínas de Saccharomyces cerevisiae , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Glutarredoxinas/metabolismo , NADP/metabolismo , Óxido Nítrico , Estrés Nitrosativo , Proteómica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Anal Biochem ; 598: 113707, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32251648

RESUMEN

Nitric oxide (NO) is an important signaling molecule involved in various biological phenomena in many organisms. The physiological functions and metabolism of NO in yeast, a unicellular microorganism, are still unknown, mainly because it is difficult to analyze the intracellular NO levels accurately. Here, we developed a new method of more accurately measuring NO content in yeast cells with the detection limit of 6 nM, by treating the cells with an NO-specific fluorescence probe followed by high-performance liquid chromatography with fluorescence detection (HPLC/FLD). This approach successfully detected and quantified the NO content inside yeast cells treated with an NO donor. Moreover, the HPLC/FLD analysis indicates that the fluorescence induced under some environmental stress conditions, such as ethanol, vanillin, and heat-shock, was not derived from NO. The HPLC/FLD method developed in this study provides a new strategy for measuring the intracellular NO concentration with higher accuracy.


Asunto(s)
Óxido Nítrico/análisis , Saccharomyces cerevisiae/química , Cromatografía Líquida de Alta Presión , Citometría de Flujo , Óxido Nítrico/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA