Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5837, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611167

RESUMEN

Ryugu is a carbonaceous rubble-pile asteroid visited by the Hayabusa2 spacecraft. Small rubble pile asteroids record the thermal evolution of their much larger parent bodies. However, recent space weathering and/or solar heating create ambiguities between the uppermost layer observable by remote-sensing and the pristine material from the parent body. Hayabusa2 remote-sensing observations find that on the asteroid (162173) Ryugu both north and south pole regions preserve the material least processed by space weathering, which is spectrally blue carbonaceous chondritic material with a 0-3% deep 0.7-µm band absorption, indicative of Fe-bearing phyllosilicates. Here we report that spectrally blue Ryugu's parent body experienced intensive aqueous alteration and subsequent thermal metamorphism at 570-670 K (300-400 °C), suggesting that Ryugu's parent body was heated by radioactive decay of short-lived radionuclides possibly because of its early formation 2-2.5 Ma. The samples being brought to Earth by Hayabusa2 will give us our first insights into this epoch in solar system history.

2.
Nature ; 579(7800): 518-522, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214245

RESUMEN

Carbonaceous (C-type) asteroids1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25, indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8. We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6. These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10.

3.
Nat Prod Commun ; 10(1): 53-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25920219

RESUMEN

The presence of diversity in the Stellera chamaejasme population was found via their chemical composition. The eight collected samples were grouped into two chemotypes on the basis of the amount of neochamaejasmin B and chamaejasmine. Diversity was also found in the amount of afzelechin. The stereochemistry of neochamaejasmin B was confirmed by NOE experiment.


Asunto(s)
Flavonoides/química , Thymelaeaceae/química , China , Geografía
5.
Science ; 333(6046): 1113-6, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868667

RESUMEN

The Hayabusa spacecraft successfully recovered dust particles from the surface of near-Earth asteroid 25143 Itokawa. Synchrotron-radiation x-ray diffraction and transmission and scanning electron microscope analyses indicate that the mineralogy and mineral chemistry of the Itokawa dust particles are identical to those of thermally metamorphosed LL chondrites, consistent with spectroscopic observations made from Earth and by the Hayabusa spacecraft. Our results directly demonstrate that ordinary chondrites, the most abundant meteorites found on Earth, come from S-type asteroids. Mineral chemistry indicates that the majority of regolith surface particles suffered long-term thermal annealing and subsequent impact shock, suggesting that Itokawa is an asteroid made of reassembled pieces of the interior portions of a once larger asteroid.

6.
Science ; 333(6046): 1128-31, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868672

RESUMEN

Noble gas isotopes were measured in three rocky grains from asteroid Itokawa to elucidate a history of irradiation from cosmic rays and solar wind on its surface. Large amounts of solar helium (He), neon (Ne), and argon (Ar) trapped in various depths in the grains were observed, which can be explained by multiple implantations of solar wind particles into the grains, combined with preferential He loss caused by frictional wear of space-weathered rims on the grains. Short residence time of less than 8 million years was implied for the grains by an estimate on cosmic-ray-produced (21)Ne. Our results suggest that Itokawa is continuously losing its surface materials into space at a rate of tens of centimeters per million years. The lifetime of Itokawa should be much shorter than the age of our solar system.

7.
Primates ; 48(1): 27-40, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17119867

RESUMEN

We investigated the diversity and phylogeography of mitochondrial DNA (mtDNA) in Japanese macaques (Macaca fuscata), an endemic species in Japan that has the northernmost distribution of any non-human primate species. DNA samples from 135 localities representing the entire range of this species were compared. A total of 53 unique haplotypes were observed for the 412-bp partial mtDNA control region sequence, with length variation distinguishing the two subspecies. Clustering analyses suggested two putative major haplogroups, of which one was geographically distributed in eastern Japan and the other in western Japan. The populations in the east showed lower mtDNA diversity than those in the west. Phylogeographical relationships of haplotypes depicted with minimum spanning network suggested differences in population structure. Population expansion was significant for the eastern but not the western population, suggesting establishment of the ancestral population was relatively long ago in the west and recent in the east. Based on fossil evidence and past climate and vegetation changes, we inferred that the postulated population expansion may have taken place after the last glacial period (after 15,000 years ago). Mitochondrial DNA showed contrasting results in both variability and phylogenetic status of local populations to those of previous studies using protein variations, particularly for populations in the periphery of the range, with special inference on habitat change during the glacial period in response to cold adaptation.


Asunto(s)
ADN Mitocondrial/genética , Macaca/genética , Macaca/fisiología , Animales , Evolución Molecular , Haplotipos , Japón , Filogenia , Crecimiento Demográfico , Factores de Tiempo
8.
Science ; 312(5778): 1338-41, 2006 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16741109

RESUMEN

X-ray fluorescence spectrometry of asteroid 25143 Itokawa was performed by the x-ray spectrometer onboard Hayabusa during the first touchdown on 19 November 2005. We selected those data observed during relatively enhanced solar activity and determined average elemental mass ratios of Mg/Si = 0.78 +/- 0.09 and Al/Si = 0.07 +/- 0.03. Our preliminary results suggest that Itokawa has a composition consistent with that of ordinary chondrites, but primitive achondrites cannot be ruled out. Among ordinary chondrites, LL- or L-chondrites appear to be more likely than H-chondrites. No substantial regional difference was found on the asteroid surface, indicating its homogeneity in composition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...