Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hereditas ; 155: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28974924

RESUMEN

BACKGROUND: Studies on the molecular genetics of horse skin pigmentation have typically focused on very few genes and proteins. In this study, we used Illumina sequencing to determine the global gene expression profiles in horses with white-colored coats and those with black-colored coats, with the goal of identifying novel genes that could regulate horse coat color. RESULTS: Genes encoding ribosomal-associated proteins were highly expressed in horse skin. We found a total of 231 unigenes that were differentially expressed between horses with white coats and horses with black coats; 119 were down-regulated, and 112 were up-regulated. Many of the up-regulated genes in black horses, such as genes related to tyrosine metabolism, may directly regulate dark coat color. Keratin genes, MIA family genes, fatty acid-related genes, and melanoma-associated genes were also differentially regulated, which suggests that they may play important roles in coat color formation. CONCLUSIONS: These findings show that the transcription profiles from white and black horse skin provide useful information to understand the genetics underlying the control of skin melanin synthesis in horses, which may enhance our knowledge of human skin diseases, such as melanoma and albinism.


Asunto(s)
Pelaje de Animal , Caballos/genética , Pigmentación de la Piel/genética , Transcriptoma , Animales , Color , Secuenciación de Nucleótidos de Alto Rendimiento , Melaninas/genética , Análisis de Secuencia de ARN
2.
Asian-Australas J Anim Sci ; 29(9): 1345-52, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26954132

RESUMEN

The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (p<0.05) between the two breeds. At the genus level, Treponema was the most abundant genus (43% in Mongolian horses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (p<0.05) between the two breeds. We found that the environment was one of very important factors that influenced horse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in horses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...