Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e27578, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533053

RESUMEN

Background: Insufficient remnant liver volume (RLV) after the resection of hepatic malignancy could lead to liver failure and mortality. Portal vein ligation (PVL) prior to hepatectomy is subsequently introduced to increase the remnant liver volume and improve the outcome of hepatic malignancy. IL-22 has previously been reported to promote liver regeneration, while facilitating tumor development in the liver via Steap4 upregulation. Here we performed PVL in mouse models to study the role of IL-22 in liver regeneration post-PVL. Methods: Liver weight and volume was measured via magnetic resonance imaging (MRI). Immunohistochemistry for Ki67 and hepatocyte growth factor (HGF) was performed. IL-22 was analyzed by flow cytometry and quantitative polymerase chain reaction (qPCR) was used for acquisition of Il-33, Steap4, Fga, Fgb and Cebpd. To analyze signaling pathways, mice with deletion of STAT3 and a neutralizing antibody for IL-22 were used. Results: The remnant liver weight and volume increased over time after PVL. Additionally, we found that liver regenerative molecules, including Ki67 and HGF, were significantly increased in remnant liver at day 3 post-PVL, as well as IL-22. Administration of IL-22 neutralizing antibody could reduce Ki67 expression after PVL. The upregulation of IL-22 after PVL was mainly derived from innate cells. IL-22 blockade resulted in lower levels of IL-33 and Steap4 in the remnant liver, which was also the case in mice with deletion of STAT3, the main downstream signaling molecule of IL-22, in hepatocytes. Conclusion: IL-22 promotes liver regeneration after PVL. Thus, a combination of IL-22 supplementation and Steap4 blockade could potentially be applied as a novel therapeutic approach to boost liver regeneration without facilitating tumor progression after PVL.

2.
J Hepatol ; 80(4): 634-644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160941

RESUMEN

BACKGROUND & AIMS: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Interleucina-10 , Neoplasias Hepáticas/patología , Receptores de Interleucina-10 , Microambiente Tumoral
3.
Oncoimmunology ; 12(1): 2269634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876835

RESUMEN

Metastasis is a cancer-related systemic disease and is responsible for the greatest mortality rate among cancer patients. Interestingly, the interaction between the immune system and cancer cells seems to play a key role in metastasis formation in the target organ. However, this complex network is only partially understood. We previously found that IL-22 produced by tissue resident iNKT17 cells promotes cancer cell extravasation, the early step of metastasis. Based on these data, we aimed here to decipher the role of IL-22 in the last step of metastasis formation. We found that IL-22 levels were increased in established metastatic sites in both human and mouse. We also found that Th22 cells were the key source of IL-22 in established metastasis sites, and that deletion of IL-22 in CD4+ T cells was protective in liver metastasis formation. Accordingly, the administration of a murine IL-22 neutralizing antibody in the establishment of metastasis formation significantly reduced the metastatic burden in a mouse model. Mechanistically, IL-22-producing Th22 cells promoted angiogenesis in established metastasis sites. In conclusion, our findings highlight that IL-22 is equally as important in contributing to metastasis formation at late metastatic stages, and thus, identify it as a novel therapeutic target in established metastasis.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias Hepáticas , Humanos , Animales , Ratones , Interleucinas , Interleucina-22
4.
Front Oncol ; 13: 1170502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324022

RESUMEN

Background: The immune system plays a pivotal role in cancer progression. Interleukin 22 binding protein (IL-22BP), a natural antagonist of the cytokine interleukin 22 (IL-22) has been shown to control the progression of colorectal cancer (CRC). However, the role of IL-22BP in the process of metastasis formation remains unknown. Methods: We used two different murine in vivo metastasis models using the MC38 and LLC cancer cell lines and studied lung and liver metastasis formation after intracaecal or intrasplenic injection of cancer cells. Furthermore, IL22BP expression was measured in a clinical cohort of CRC patients and correlated with metastatic tumor stages. Results: Our data indicate that low levels of IL-22BP are associated with advanced (metastatic) tumor stages in colorectal cancer. Using two different murine in vivo models we show that IL-22BP indeed controls the progression of liver but not lung metastasis in mice. Conclusions: We here demonstrate a crucial role of IL-22BP in controlling metastasis progression. Thus, IL-22 might represent a future therapeutic target against the progression of metastatic CRC.

5.
J Hepatol ; 79(2): 296-313, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37224925

RESUMEN

BACKGROUND & AIMS: The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS: C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and µMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS: Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS: Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS: There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microbiota , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Ratones Endogámicos C57BL , Hígado/patología , Fibrosis , Cirrosis Hepática/complicaciones , Ratones Transgénicos , Inmunoglobulina A/metabolismo , Inmunoglobulina A/farmacología , Modelos Animales de Enfermedad , Dieta Alta en Grasa/efectos adversos
6.
Immunity ; 56(1): 125-142.e12, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630911

RESUMEN

During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.


Asunto(s)
Interleucinas , Neoplasias Hepáticas , Células T Asesinas Naturales , Animales , Ratones , Células Endoteliales/metabolismo , Interleucinas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Ratones Endogámicos C57BL , Células T Asesinas Naturales/metabolismo , Neoplasias Colorrectales/metabolismo , Interleucina-22
7.
Cancers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36551508

RESUMEN

Hepatocellular carcinoma (HCC) ranks among the five most common cancer entities worldwide and leads to hundred-thousands of deaths every year. Despite some groundbreaking therapeutical revelations during the last years, the overall prognosis remains poor. Although the immune system fights malignant transformations with a robust anti-tumor response, certain immune mediators have also been shown to promote cancer development. For example, interleukin (IL)-22 has been associated with HCC progression and worsened prognosis in multiple studies. However, the underlying mechanisms of the pathological role of IL-22-signaling as well as the role of its natural antagonist IL-22 binding protein (IL-22BP) in HCC remain elusive. Here, we corroborate the pathogenic role of IL-22 in HCC by taking advantage of two mouse models. Moreover, we observed a protective role of IL-22BP during liver carcinogenesis. While IL-22 was mainly produced by CD4+ T cells in HCC, IL-22BP was abundantly expressed by neutrophils during liver carcinogenesis. Hepatocytes could be identified as a major target of this pathological IL-22-signaling. Moreover, abrogation of IL-22 signaling in hepatocytes in IL22ra1flox/flox × AlbCre+ mice reduced STEAP4 expression-a known oncogene-in HCC in vivo. Likewise, STEAP4 expression correlated with IL22 levels in human HCC samples, but not in healthy liver specimens. In conclusion, these data encourage the development of therapeutical approaches that target the IL-22-IL-22BP axis in HCC.

8.
Sci Adv ; 7(33)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34389533

RESUMEN

Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.

9.
Semin Immunopathol ; 43(4): 591-607, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33851257

RESUMEN

The human liver fulfills several vital tasks daily and possesses an impressive ability to self-regenerate. However, the capacity of this self-healing process can be exhausted by a variety of different liver diseases, such as alcoholic liver damage, viral hepatitis, or hepatocellular carcinoma. Over time, all these diseases generally lead to progressive liver failure that can become fatal if left untreated. Thus, a great effort has been directed towards the development of innovative therapies. The most recently discovered therapies often involve modifying the patient's immune system to enhance a beneficial immune response. Current data suggest that, among others, the cytokine IL-22 might be a promising therapeutical candidate. IL-22 and its endogenous antagonist, IL-22BP, have been under thorough scientific investigation for nearly 20 years. While IL-22 is mainly produced by TH22 cells, ILC3s, NKT cells, or γδ T cells, sources of IL-22BP include dendritic cells, eosinophils, and CD4+ cells. In many settings, IL-22 was shown to promote regenerative potential and, thus, could protect tissues from pathogens and damage. However, the effects of IL-22 during carcinogenesis are more ambiguous and depend on the tumor entity and microenvironment. In line with its capabilities of neutralizing IL-22 in vivo, IL-22BP possesses often, but not always, an inverse expression pattern compared to its ligand. In this comprehensive review, we will summarize past and current findings regarding the roles of IL-22 and IL-22BP in liver diseases with a particular focus on the leading causes of advanced liver failure, namely, liver infections, liver damage, and liver malignancies.


Asunto(s)
Receptores de Interleucina , Humanos , Interleucinas , Hígado , Interleucina-22
10.
FEBS J ; 288(24): 6942-6971, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33448148

RESUMEN

Cancer is one of the leading causes of death worldwide. When cancer patients are diagnosed with metastasis, meaning that the primary tumor has spread to at least one different site, their life expectancy decreases dramatically. In the past decade, the immune system´s role in fighting cancer and metastasis has been studied extensively. Importantly, immune cells and inflammatory reactions generate potent antitumor responses but also contribute to tumor development. However, the molecular and cellular mechanisms underlying this dichotomic interaction between the immune system and cancer are still poorly understood. Recently, a spotlight has been cast on the distinct subsets of immune cells and their derived cytokines since evidence has implicated their crucial impact on cancer development. T helper 17 cell (TH 17) cells, which express the master transcriptional factor Retinoic acid-receptor-related orphan receptor gamma t, are among these critical cell subsets and are defined by their production of type 3 cytokines, such as IL-17A, IL-17F, and IL-22. Depending on the tumor microenvironment, these cytokines can also be produced by other immune cell sources, such as T cytotoxic 17 cell, innate lymphoid cells, NKT cells, or γδ T cells. To date, a lot of data have been collected describing the divergent functions of IL-17A, IL-17F, and IL-22 in malignancies. In this comprehensive review, we discuss the role of these TH 17- and non-TH 17-derived type 3 cytokines in different tumor entities. Furthermore, we will provide a structured insight into the strict regulation and subsequent downstream mechanisms of these cytokines in cancer and metastasis.


Asunto(s)
Interleucina-17/metabolismo , Interleucinas/metabolismo , Neoplasias/metabolismo , Humanos , Neoplasias/patología , Células Th17 , Interleucina-22
11.
Gastroenterology ; 159(4): 1417-1430.e3, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32585307

RESUMEN

BACKGROUND & AIMS: Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice. METHODS: We obtained tumor and nontumor tissues from patients with colorectal cancer (CRC) and measured levels of cytokines by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. We measured levels of Il22bp messenger RNA in colon tissues from wild-type, Tnf-/-, Lta-/-, and Ltb-/- mice. Mice were given azoxymethane and dextran sodium sulfate to induce colitis and associated cancer or intracecal injections of MC38 tumor cells. Some mice were given inhibitors of lymphotoxin beta receptor (LTBR). Intestine tissues were analyzed by single-cell sequencing to identify cell sources of lymphotoxin. We performed immunohistochemistry analysis of colon tissue microarrays from patients with CRC (1475 tissue cores, contained tumor and nontumor tissues) and correlated levels of IL22BP with patient survival times. RESULTS: Levels of IL22BP were decreased in human colorectal tumors, compared with nontumor tissues, and correlated with levels of lymphotoxin. LTBR signaling was required for expression of IL22BP in colon tissues of mice. Wild-type mice given LTBR inhibitors had an increased tumor burden in both models, but LTBR inhibitors did not increase tumor growth in Il22bp-/- mice. Lymphotoxin directly induced expression of IL22BP in cultured human monocyte-derived dendritic cells via activation of nuclear factor κB. Reduced levels of IL22BP in colorectal tumor tissues were associated with shorter survival times of patients with CRC. CONCLUSIONS: Lymphotoxin signaling regulates expression of IL22BP in colon; levels of IL22BP are reduced in human colorectal tumors, associated with shorter survival times. LTBR signaling regulates expression of IL22BP in colon tumors in mice and cultured human dendritic cells. Patients with colorectal tumors that express low levels of IL22BP might benefit from treatment with an IL22 antagonist.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Linfotoxina-alfa/metabolismo , Receptores de Interleucina/metabolismo , Anciano , Animales , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , ARN Mensajero/metabolismo , Receptores de Interleucina/genética , Tasa de Supervivencia
12.
J Immunol ; 199(12): 4078-4090, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29109123

RESUMEN

Acute liver injury can be secondary to a variety of causes, including infections, intoxication, and ischemia. All of these insults induce hepatocyte death and subsequent inflammation, which can make acute liver injury a life-threatening event. IL-22 is a dual natured cytokine which has context-dependent protective and pathogenic properties during tissue damage. Accordingly, IL-22 was shown to promote liver regeneration upon acute liver damage. However, other studies suggest pathogenic properties of IL-22 during chronic liver injury. IL-22 binding protein (IL-22BP, IL-22Ra2) is a soluble inhibitor of IL-22 that regulates IL-22 activity. However, the significance of endogenous IL-22BP in acute liver injury is unknown. We hypothesized that IL-22BP may play a role in acute liver injury. To test this hypothesis, we used Il22bp-deficient mice and murine models of acute liver damage induced by ischemia reperfusion and N-acetyl-p-aminophenol (acetaminophen) administration. We found that Il22bp-deficient mice were more susceptible to acute liver damage in both models. We used Il22 × Il22bp double-deficient mice to show that this effect is indeed due to uncontrolled IL-22 activity. We could demonstrate mechanistically increased expression of Cxcl10 by hepatocytes, and consequently increased infiltration of inflammatory CD11b+Ly6C+ monocytes into the liver in Il22bp-deficient mice upon liver damage. Accordingly, neutralization of CXCL10 reversed the increased disease susceptibility of Il22bp-deficient mice. In conclusion, our data indicate that IL-22BP plays a protective role in acute liver damage, via controlling IL-22-induced Cxcl10 expression.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hígado/irrigación sanguínea , Receptores de Interleucina/fisiología , Daño por Reperfusión/fisiopatología , Animales , Movimiento Celular , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Quimiocina CXCL10/antagonistas & inhibidores , Quimiocina CXCL10/fisiología , Constricción , Hepatectomía , Hepatocitos/metabolismo , Interleucinas/deficiencia , Interleucinas/metabolismo , Isquemia/fisiopatología , Hígado/fisiología , Fallo Hepático Agudo/etiología , Fallo Hepático Agudo/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/fisiología , Receptores de Interleucina/deficiencia , Receptores de Interleucina/genética , Regeneración , Daño por Reperfusión/prevención & control , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...