Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36626746

RESUMEN

Aurantiochytrium limacinum can accumulate high amounts of omega-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA). Although salinity affects the DHA content, its impact on the metabolic pathway responsible for DHA production in A. limacinum is not completely understood. To address this issue, we investigated the transcriptional profile of A. limacinum under hypoosmotic stress. We first cultured A. limacinum under typical and low salinity for RNA sequencing, respectively. Transcriptome analyses revealed that 933 genes exhibited significant changes in expression under hypoosmotic conditions, of which 81.4% were downregulated. Strikingly, A. limacinum downregulated genes related to polyketide synthesis and fatty acid synthase pathways, while upregulating ß-oxidation-related genes. In accordance with this, DHA production significantly decreased under hypoosmotic conditions, while antioxidant-related genes were significantly upregulated. Considering that ß-oxidation of fatty acids generates energy and reactive oxygen species (ROS), our results suggest that A. limacinum utilizes fatty acids for energy to survive under hypoosmotic conditions and detoxifies ROS using antioxidant systems.


Asunto(s)
Antioxidantes , Ácidos Grasos Omega-3 , Especies Reactivas de Oxígeno , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos , Perfilación de la Expresión Génica , Cloruro de Sodio
2.
J Appl Microbiol ; 132(6): 4330-4337, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35279928

RESUMEN

AIMS: Astaxanthin-producing protist Aurantiochytrium limacinum can accumulate higher amounts of astaxanthin under light conditions; however, little is known about the impact of light exposure on its metabolism. Here, we investigated the transcriptional profile of A. limacinum under light conditions. METHODS AND RESULTS: Transcriptomic analyses revealed that 962 genes of A. limacinum showed a significant change in expression under light conditions, most of which (94.5%) were downregulated. Furthermore, gene ontology enrichment analysis indicated that A. limacinum mainly downregulated genes associated with cell motility, proliferation and gene expression processes, whose activities depend on ATP as an energy source. Additionally, the quantification of carotenoid and its transcripts suggested that ß-carotene and astaxanthin biosynthesis pathways were rate-limiting and tightly regulated steps, respectively. In comparison, these processes were enhanced under light conditions. CONCLUSIONS: Considering that astaxanthin accumulation was highly correlated with reactive oxygen species (ROS) levels in microalgae, our results suggest that A. limacinum reduces ATP consumption to decrease the occurrence of ROS in mitochondria while accumulating astaxanthin to prevent ROS damage. SIGNIFICANCE AND IMPACT OF STUDY: This study provides novel insights into the impact of light exposure on A. limacinum metabolism, thereby facilitating a complete understanding of this protist for efficient astaxanthin production.


Asunto(s)
Microalgas , Estramenopilos , Adenosina Trifosfato/metabolismo , Perfilación de la Expresión Génica , Microalgas/genética , Especies Reactivas de Oxígeno/metabolismo , Estramenopilos/genética , Estramenopilos/metabolismo
3.
Appl Biochem Biotechnol ; 193(6): 1967-1978, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33528746

RESUMEN

Chlamydomonas reinhardtii is a well-established microalgal model species with a shorter doubling time, which is a promising natural source for the efficient production of high-value carotenoids. In the microalgal carotenoid biosynthetic pathway, lycopene is converted either into ß-carotene by lycopene ß-cyclase or into α-carotene by lycopene ε-cyclase (LCYE) and lycopene ß-cyclase. In this study, we overexpressed the LCYE gene in C. reinhardtii to estimate its effect on lycopene metabolism and lutein production. Chlamydomonas transformants (CrLCYE#L1, #L5, and #L6) produced significantly increased amounts of lutein per culture (up to 2.6-fold) without a decrease in cell yields. Likewise, the expression levels of LCYE gene in transformants showed a significant increase compared with that of the wild-type strain. These results suggest that LCYE overexpression enhances the conversion of lycopene to α-carotene, which in turn improves lutein productivity. Interestingly, their ß-carotene productivity appeared to increase slightly rather than decrease. Considering that the inhibition of the lycopene cyclization steps often induces higher expression in genes upstream of metabolic branches, this result implies that the redirection from ß-carotene to α-carotene by LCYE overexpression might also enhance upstream gene expression, thereby leading to auxiliary ß-carotene production.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Liasas Intramoleculares/biosíntesis , Licopeno/metabolismo , Proteínas de Plantas/biosíntesis , Carotenoides/metabolismo , Chlamydomonas reinhardtii/genética , Liasas Intramoleculares/genética , beta Caroteno/genética , beta Caroteno/metabolismo
4.
Appl Biochem Biotechnol ; 193(1): 52-64, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32808245

RESUMEN

Aurantiochytrium limacinum produces both docosahexaenoic acid (DHA) and astaxanthin, respectively. Organisms that produce these industrially important materials more efficiently than microalgae are currently needed. In this study, we overexpressed a putative homolog of CarS, which is involved in synthesizing the astaxanthin precursor, ß-carotene, in A. limacinum to increase carotenoid synthesis with the goal of obtaining strains that produce large amounts of both DHA and carotenoids. AlCarS transformants #1 and #18 produced significantly increased amounts of astaxanthin as assessed according to culture (up to 5.8-fold) and optical density (up to 9.3-fold). The improved astaxanthin production of these strains did not affect their DHA productivity. Additionally, their CarS expression levels were higher than those of the wild-type strain, suggesting that CarS overexpression enhanced ß-carotene production, which in turn improved astaxanthin productivity. Although cell yields were slightly decreased, these features will be valuable in health food, medical care, and animal feed fields.


Asunto(s)
Ácidos Docosahexaenoicos/biosíntesis , Estramenopilos , Estramenopilos/enzimología , Estramenopilos/genética , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...