Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1179269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362211

RESUMEN

Carbon and nitrogen are crucial elements for life and must be efficiently regenerated in a circular economy. Biomass streams at the end of their useful life, such as sewage sludge, are difficult to recycle even though they contain organic carbon and nitrogen components. Gasification is an emerging technology to utilize such challenging waste streams and produce syngas that can be further processed into, e.g., Fischer-Tropsch fuels, methane, or methanol. Here, the objective is to investigate if nitrogen can be recovered from product gas cleaning in a dual fluidized bed (DFB) after gasification of softwood pellets to form yeast biomass. Yeast biomass is a protein-rich product, which can be used for food and feed applications. An aqueous solution containing ammonium at a concentration of 66 mM was obtained and by adding other nutrients it enables the growth of the methylotrophic yeast Komagataella phaffii to form 6.2 g.L-1 dry yeast biomass in 3 days. To further integrate the process, it is discussed how methanol can be obtained from syngas by chemical catalysis, which is used as a carbon source for the yeast culture. Furthermore, different gas compositions derived from the gasification of biogenic feedstocks including sewage sludge, bark, and chicken manure are evaluated for their ability to yield methanol and yeast biomass. The different feedstocks are compared based on their potential to yield methanol and ammonia, which are required for the generation of yeast biomass. It was found that the gasification of bark and chicken manure yields a balanced carbon and nitrogen source for the formation of yeast biomass. Overall, a novel integrated process concept based on renewable, biogenic feedstocks is proposed connecting gasification with methanol synthesis to enable the formation of protein-rich yeast biomass.

2.
Biologicals ; 65: 10-17, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32278615

RESUMEN

Nowadays, Pichia pastoris is a well-known yeast for the production of recombinant proteins. The yield of protein production tightly depends on the copy number of the gene of interest into the host chromosome. Real-time PCR has been used as a high throughput method for molecular detection of gene copy number. In light of determining an absolute gene copy number, the reliability of the qPCR quantification standard is a major issue and it can be a potential source of errors in the final results. Since the literature on this issue is inconclusive, we set out to find a reliable quantification method that allows comparing results in different laboratories. We generated standard curves for two genomic loci (5'UTR AOX1 and ARG4) and for plasmid DNA carrying hGM-CSF coding sequence. These data was used to calculate the integrated hGM-CSFcDNA copy number in a recombinant P. pastoris clone. In our expriments the 5'UTR AOX1 gene showed a more accurate quantification standard, based on more efficient amplification and better reproducibility. The results obtained in this study showed that the differences in terms of structure and length between circular plasmid and linear gDNA could be the source of significant differences in the pattern of DNA amplification.


Asunto(s)
Dosificación de Gen , Proteínas Recombinantes/genética , Saccharomycetales/genética , ADN/genética , ADN Circular/genética , Genoma/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Organismos Modificados Genéticamente , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Proteínas Recombinantes/biosíntesis , Reproducibilidad de los Resultados
3.
Mol Biotechnol ; 61(7): 521-527, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31054084

RESUMEN

The production of the recombinant proteins under the control of AOX1 promoter is a one of the most common expression systems in the methylotrophic yeast Pichia pastoris which is induced by methanol. The application of this expression platform is restricted by the toxicity and inflammatory nature of methanol, especially in food and pharmaceutical products. Human granulocyte macrophage-colony stimulating factor (hGM-CSF) is an important pharmaceutical protein, playing a crucial role in the proliferation and differentiation of innate immune cells. In this study, a methanol-free expression platform for extracellular expression of hGM-CSF was developed. To attain this goal, a novel constructed expression vector pEP(α)101, carrying the FMD promoter regulating recombinant expression by glycerol derepression was designed. The optimized hGM-CSF gene was subcloned into pEP(α)101 and transformed into P. pastoris. The expression of rhGM-CSF in three different culture media were investigated. Based on the observed heterogeneous glycosylation pattern on SDS-PAGE and western blot, the glycoproteins were deglycosylated to remove carbohydrate units. According to the results, the novel methanol independent PFMD expression platform would be a suitable candidate for driving heterologous gene expression especially for the production of food-grade and therapeutically important recombinant proteins.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Pichia , Proteínas Recombinantes/biosíntesis , Transfección/métodos , Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Metanol , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...