Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(10): 2644-2657, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38576341

RESUMEN

Developing a tumor model with vessels has been a challenge in microfluidics. This difficulty is because cancer cells can overgrow in a co-culture system. The up-regulation of anti-angiogenic factors during the initial tumor development can hinder neovascularization. The standard method is to develop a quiescent vessel network before loading a tumor construct in an adjacent chamber, which simulates the interaction between a tumor and its surrounding vessels. Here, we present a new method that allows a vessel network and a tumor to develop simultaneously in two linked chambers. The physiological environment of these two chambers is controlled by a microfluidic resistive circuit using two symmetric long microchannels. Applying the resistive circuit, a diffusion-dominated environment with a small 2-D pressure gradient is created across the two chambers with velocity <10.9 nm s-1 and Péclet number <6.3 × 10-5. This 2-D pressure gradient creates a V-shaped velocity clamp to confine the tumor-associated angiogenic factors at pores between the two chambers, and it has two functions. At the early stage, vasculogenesis is stimulated to grow a vessel network in the vessel chamber with minimal influence from the tumor that is still developed in the adjacent chamber. At the post-tumor-development stage, the induced steep concentration gradient at pores mimics vessel-tumor interactions to stimulate angiogenesis to grow vessels toward the tumor. Applying this method, we demonstrate that vasculogenic vessels can grow first, followed by stimulating angiogenesis. Angiogenic vessels can grow into stroma tissue up to 1.3 mm long, and vessels can also grow into or wrap around a 625 µm tumor spheroid or a tumor tissue developed from a cell suspension. In summary, our study suggests that the interactions between a developing vasculature and a growing tumor must be controlled differently throughout the tissue development process, including at the early stage when vessels are still forming and at the later stage when the tumor needs to interact with the vessels.


Asunto(s)
Técnicas Analíticas Microfluídicas , Neovascularización Patológica , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Difusión , Neoplasias/metabolismo , Neoplasias/patología , Inductores de la Angiogénesis/metabolismo , Inductores de la Angiogénesis/farmacología , Diseño de Equipo
2.
Front Cell Infect Microbiol ; 12: 726256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558102

RESUMEN

Rationale and Objective: Gut microbiota have been targeted by alternative therapies for non-communicable diseases. We examined the gut microbiota of a healthy Taiwanese population, identified various bacterial drivers in different demographics, and compared them with dialysis patients to associate kidney disease progression with changes in gut microbiota. Study Design: This was a cross-sectional cohort study. Settings and Participants: Fecal samples were obtained from 119 healthy Taiwanese volunteers, and 16S rRNA sequencing was done on the V3-V4 regions to identify the bacterial enterotypes. Twenty-six samples from the above cohort were compared with fecal samples from 22 peritoneal dialysis and 16 hemodialysis patients to identify species-level bacterial biomarkers in the dysbiotic gut of chronic kidney disease (CKD) patients. Results: Specific bacterial species were identified pertaining to different demographics such as gender, age, BMI, physical activity, and sleeping habits. Dialysis patients had a significant difference in gut microbiome composition compared to healthy controls. The most abundant genus identified in CKD patients was Bacteroides, and at the species level hemodialysis patients showed significant abundance in B. ovatus, B. caccae, B. uniformis, and peritoneal dialysis patients showed higher abundance in Blautia producta (p ≤ 0.05) than the control group. Pathways pertaining to the production of uremic toxins were enriched in CKD patients. The abundance of the bacterial species depended on the type of dialysis treatment. Conclusion: This study characterizes the healthy gut microbiome of a Taiwanese population in terms of various demographics. In a case-control examination, the results showed the alteration in gut microbiota in CKD patients corresponding to different dialysis treatments. Also, this study identified the bacterial species abundant in CKD patients and their possible role in complicating the patients' condition.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Insuficiencia Renal Crónica , Toxinas Biológicas , Bacterias/genética , Bacterias/metabolismo , Bacteroides/genética , Estudios Transversales , Disbiosis/microbiología , Femenino , Humanos , Masculino , ARN Ribosómico 16S/genética , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/terapia , Taiwán , Tóxinas Urémicas
3.
Front Cell Dev Biol ; 10: 825791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392174

RESUMEN

The mediation of the extracellular matrix is one of the major environmental cues to direct cell migration, such as stiffness-dependent durotaxis and adhesiveness-dependent haptotaxis. In this study, we explore another possible contact guidance: roughness dependent topotaxis. Different from previously reported studies on topotaxis that use standard photolithography to create micron or submicron structures that have identical height and different spatial densities, we develop a new method to programmatically fabricate substrates with different patterns of surface roughness using two-photon polymerization. Surface roughness ranging from 0.29 to 1.11 µm can be created by controlling the voxel distance between adjacently cured ellipsoid voxels. Patterned Ormocomp® masters are transferred to polypropylene films using the nanoimprinting method for cell migration study. Our experimental results suggest that MG63 cells can sense the spatial distribution of their underlying extracellar roughness and modulate their migration velocity and direction. Three characteristic behaviors were identified. First, cells have a higher migration velocity on substrates with higher roughness. Second, cells preferred to migrate from regions of higher roughness to lower roughness, and their migration velocity also decreased with descending roughness. Third, the migration velocity remained unchanged on the lower roughness range on a graded substrate with a steeper roughness. The last cell migration characteristic suggests the steepness of the roughness gradient can be another environmental cue in addition to surface roughness. Finally, the combination of two-photon polymerization and nanoimprint methods could become a new fabrication methodology to create better 3D intricate structures for exploring topotactic cell migrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...