Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Cell Stem Cell ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38733993

RESUMEN

Enteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and cis-regulatory dynamics that culminate in discrete cell types. Abundant EEC precursors expressed stage-specific genes and TFs. Before expressing pre-terminal NEUROD1, post-mitotic precursors oscillated between transcriptionally distinct ASCL1+ and HES6hi cell states. Loss of either factor accelerated EEC differentiation substantially and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and non-EC cell features. These TFs mainly bind cis-elements that are accessible in undifferentiated stem cells, and they tailor subsequent expression of TF combinations that underlie discrete EEC identities. Thus, early TF oscillations retard EEC maturation to enable accurate diversity within a medically important cell lineage.

2.
Nat Commun ; 15(1): 3595, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678016

RESUMEN

Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine. Using proteomics and CRISPR-Cas9 screening, we identify MTA2 as a crucial component of the molecular machinery that, together with SATB2, restrains colonic plasticity. MTA2 loss in the adult mouse colon activated lipid absorptive genes and functional lipid uptake. Mechanistically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A release from colonic chromatin, and accumulation on small intestinal chromatin. SATB2 similarly restrains colonic plasticity through an HNF4A-dependent mechanism. Our study provides a generalizable model of lineage plasticity in which broadly-expressed TFs are retained on tissue-specific enhancers to maintain cell identity and prevent activation of alternative lineages, and their release unleashes plasticity.


Asunto(s)
Cromatina , Colon , Factor Nuclear 4 del Hepatocito , Intestino Delgado , Proteínas de Unión a la Región de Fijación a la Matriz , Animales , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Intestino Delgado/metabolismo , Colon/metabolismo , Ratones , Cromatina/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Humanos , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Masculino , Plasticidad de la Célula/genética , Linaje de la Célula , Ratones Noqueados
3.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260422

RESUMEN

Enteroendocrine cells (EECs), which secrete serotonin (enterochromaffin cells, EC) or a dominant peptide hormone, serve vital physiologic functions. As with any adult human lineage, the basis for terminal cell diversity remains obscure. We replicated human EEC differentiation in vitro , mapped transcriptional and chromatin dynamics that culminate in discrete cell types, and studied abundant EEC precursors expressing selected transcription factors (TFs) and gene programs. Before expressing the pre-terminal factor NEUROD1, non-replicating precursors oscillated between epigenetically similar but transcriptionally distinct ASCL1 + and HES6 hi cell states. Loss of either factor substantially accelerated EEC differentiation and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and hormone-producing cell features. Expressed late in EEC differentiation, the latter TFs mainly bind cis -elements that are accessible in undifferentiated stem cells and tailor the subsequent expression of TF combinations that specify EEC types. Thus, TF oscillations retard EEC maturation to enable accurate EEC diversification.

4.
Nat Commun ; 14(1): 7978, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042929

RESUMEN

PDGFRA-expressing mesenchyme supports intestinal stem cells. Stomach epithelia have related niche dependencies, but their enabling mesenchymal cell populations are unknown, in part because previous studies pooled the gastric antrum and corpus. Our high-resolution imaging, transcriptional profiling, and organoid assays identify regional subpopulations and supportive capacities of purified mouse corpus and antral PDGFRA+ cells. Sub-epithelial PDGFRAHi myofibroblasts are principal sources of BMP ligands and two molecularly distinct pools distribute asymmetrically along antral glands but together fail to support epithelial growth in vitro. In contrast, PDGFRALo CD55+ cells strategically positioned beneath gastric glands promote epithelial expansion in the absence of other cells or factors. This population encompasses a small fraction expressing the BMP antagonist Grem1. Although Grem1+ cell ablation in vivo impairs intestinal stem cells, gastric stem cells are spared, implying that CD55+ cell activity in epithelial self-renewal derives from other subpopulations. Our findings shed light on spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for epithelial support.


Asunto(s)
Mucosa Gástrica , Estómago , Ratones , Animales , Células Madre , Intestinos , Antro Pilórico , Proteínas Tirosina Quinasas Receptoras , Células Epiteliales
5.
Cell Rep ; 42(11): 113421, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37952154

RESUMEN

We explore the changes in chromatin accessibility and transcriptional programs for cochlear hair cell differentiation from postmitotic supporting cells using organoids from postnatal cochlea. The organoids contain cells with transcriptional signatures of differentiating vestibular and cochlear hair cells. Construction of trajectories identifies Lgr5+ cells as progenitors for hair cells, and the genomic data reveal gene regulatory networks leading to hair cells. We validate these networks, demonstrating dynamic changes both in expression and predicted binding sites of transcription factors (TFs) during organoid differentiation. We identify known regulators of hair cell development, Atoh1, Pou4f3, and Gfi1, and the analysis predicts the regulatory factors Tcf4, an E-protein and heterodimerization partner of Atoh1, and Ddit3, a CCAAT/enhancer-binding protein (C/EBP) that represses Hes1 and activates transcription of Wnt-signaling-related genes. Deciphering the signals for hair cell regeneration from mammalian cochlear supporting cells reveals candidates for hair cell (HC) regeneration, which is limited in the adult.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cóclea , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Organoides/metabolismo , Mamíferos/metabolismo
6.
Cell Stem Cell ; 30(4): 433-449.e8, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028407

RESUMEN

Signals from the surrounding niche drive proliferation and suppress differentiation of intestinal stem cells (ISCs) at the bottom of intestinal crypts. Among sub-epithelial support cells, deep sub-cryptal CD81+ PDGFRAlo trophocytes capably sustain ISC functions ex vivo. Here, we show that mRNA and chromatin profiles of abundant CD81- PDGFRAlo mouse stromal cells resemble those of trophocytes and that both populations provide crucial canonical Wnt ligands. Mesenchymal expression of key ISC-supportive factors extends along a spatial and molecular continuum from trophocytes into peri-cryptal CD81- CD55hi cells, which mimic trophocyte activity in organoid co-cultures. Graded expression of essential niche factors is not cell-autonomous but dictated by the distance from bone morphogenetic protein (BMP)-secreting PDGFRAhi myofibroblast aggregates. BMP signaling inhibits ISC-trophic genes in PDGFRAlo cells near high crypt tiers; that suppression is relieved in stromal cells near and below the crypt base, including trophocytes. Cell distances thus underlie a self-organized and polar ISC niche.


Asunto(s)
Mucosa Intestinal , Nicho de Células Madre , Animales , Ratones , Mucosa Intestinal/metabolismo , Intestinos , Transducción de Señal , Diferenciación Celular , Proliferación Celular
7.
Dev Cell ; 58(7): 550-564.e6, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36924771

RESUMEN

Wnt and Rspondin (RSPO) signaling drives proliferation, and bone morphogenetic protein inhibitors (BMPi) impede differentiation, of intestinal stem cells (ISCs). Here, we identify the mouse ISC niche as a complex, multi-layered structure that encompasses distinct mesenchymal and smooth muscle populations. In young and adult mice, diverse sub-cryptal cells provide redundant ISC-supportive factors; few of these are restricted to single cell types. Niche functions refine during postnatal crypt morphogenesis, in part to oppose the dense aggregation of differentiation-promoting BMP+ sub-epithelial myofibroblasts at crypt-villus junctions. Muscularis mucosae, a specialized muscle layer, first appears during this period and supplements neighboring RSPO and BMPi sources. Components of this developing niche are conserved in human fetuses. The in vivo ablation of mouse postnatal smooth muscle increases BMP signaling activity, potently limiting a pre-weaning burst of crypt fission. Thus, distinct and progressively specialized mesenchymal cells together create the milieu that is required to propagate crypts during rapid organ growth and to sustain adult ISCs.


Asunto(s)
Intestinos , Nicho de Células Madre , Humanos , Ratones , Animales , Nicho de Células Madre/fisiología , Mucosa Intestinal/metabolismo , Diferenciación Celular , Proteínas Morfogenéticas Óseas/metabolismo , Músculo Liso
8.
bioRxiv ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36798304

RESUMEN

PDGFRA-expressing mesenchyme provides a niche for intestinal stem cells. Corresponding compartments are unknown in the stomach, where corpus and antral glandular epithelia have similar niche dependencies but are structurally distinct from the intestine and from each other. Previous studies considered antrum and corpus as a whole and did not assess niche functions. Using high-resolution imaging and sequencing, we identify regional subpopulations and niche properties of purified mouse corpus and antral PDGFRA + cells. PDGFRA Hi sub-epithelial myofibroblasts are principal sources of BMP ligands in both gastric segments; two molecularly distinct groups distribute asymmetrically along antral glands but together fail to support epithelial organoids in vitro . In contrast, strategically positioned PDGFRA Lo cells that express CD55 enable corpus and antral organoid growth in the absence of other cellular or soluble factors. Our study provides detailed insights into spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for stem cell support.

9.
Genes Dev ; 36(11-12): 684-698, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738677

RESUMEN

The progeny of intestinal stem cells (ISCs) dedifferentiate in response to ISC attrition. The precise cell sources, transitional states, and chromatin remodeling behind this activity remain unclear. In the skin, stem cell recovery after injury preserves an epigenetic memory of the damage response; whether similar memories arise and persist in regenerated ISCs is not known. We addressed these questions by examining gene activity and open chromatin at the resolution of single Neurog3-labeled mouse intestinal crypt cells, hence deconstructing forward and reverse differentiation of the intestinal secretory (Sec) lineage. We show that goblet, Paneth, and enteroendocrine cells arise by multilineage priming in common precursors, followed by selective access at thousands of cell-restricted cis-elements. Selective ablation of the ISC compartment elicits speedy reversal of chromatin and transcriptional features in large fractions of precursor and mature crypt Sec cells without obligate cell cycle re-entry. ISC programs decay and reappear along a cellular continuum lacking discernible discrete interim states. In the absence of gross tissue damage, Sec cells simply reverse their forward trajectories, without invoking developmental or other extrinsic programs, and starting chromatin identities are effectively erased. These findings identify strikingly plastic molecular frameworks in assembly and regeneration of a self-renewing tissue.


Asunto(s)
Cromatina , Células Madre , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Proteínas del Tejido Nervioso/metabolismo
10.
Cell Res ; 32(3): 225-226, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34845342

Asunto(s)
Neoplasias , Humanos
11.
Genes Dev ; 36(1-2): 38-52, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34969824

RESUMEN

Barrett's esophagus (BE) and gastric intestinal metaplasia are related premalignant conditions in which areas of human stomach epithelium express mixed gastric and intestinal features. Intestinal transcription factors (TFs) are expressed in both conditions, with unclear causal roles and cis-regulatory mechanisms. Ectopic CDX2 reprogrammed isogenic mouse stomach organoid lines to a hybrid stomach-intestinal state transcriptionally similar to clinical metaplasia; squamous esophageal organoids resisted this CDX2-mediated effect. Reprogramming was associated with induced activity at thousands of previously inaccessible intestine-restricted enhancers, where CDX2 occupied DNA directly. HNF4A, a TF recently implicated in BE pathogenesis, induced weaker intestinalization by binding a novel shadow Cdx2 enhancer and hence activating Cdx2 expression. CRISPR/Cas9-mediated germline deletion of that cis-element demonstrated its requirement in Cdx2 induction and in the resulting activation of intestinal genes in stomach cells. dCas9-conjugated KRAB repression mapped this activity to the shadow enhancer's HNF4A binding site. Altogether, we show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy.


Asunto(s)
Esófago de Barrett , Factores de Transcripción , Animales , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Esófago de Barrett/patología , Factor de Transcripción CDX2/genética , Proteínas de Homeodominio/genética , Metaplasia/genética , Ratones , Factores de Transcripción/genética
12.
Cell Stem Cell ; 29(1): 101-115.e10, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34582804

RESUMEN

Adult stem cells maintain regenerative tissue structure and function by producing tissue-specific progeny, but the factors that preserve their tissue identities are not well understood. The small and large intestines differ markedly in cell composition and function, reflecting their distinct stem cell populations. Here we show that SATB2, a colon-restricted chromatin factor, singularly preserves LGR5+ adult colonic stem cell and epithelial identity in mice and humans. Satb2 loss in adult mice leads to stable conversion of colonic stem cells into small intestine ileal-like stem cells and replacement of the colonic mucosa with one that resembles the ileum. Conversely, SATB2 confers colonic properties on the mouse ileum. Human colonic organoids also adopt ileal characteristics upon SATB2 loss. SATB2 regulates colonic identity in part by modulating enhancer binding of the intestinal transcription factors CDX2 and HNF4A. Our study uncovers a conserved core regulator of colonic stem cells able to mediate cross-tissue plasticity in mature intestines.


Asunto(s)
Colon , Íleon , Animales , Mucosa Intestinal , Ratones , Organoides , Células Madre
13.
Cell Stem Cell ; 28(8): 1340-1342, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358438

RESUMEN

Mutant oncogenes could enable clonal dominance by cell-intrinsic means or by suppressing nearby wild-type stem cells. Reporting recently in Nature, three groups demonstrate potent neighborhood effects, both within intestinal crypts (Flanagan et al., 2021; van Neerven et al., 2021) and across crypts through intermediary sub-epithelial trophocytes (Yum et al., 2021).


Asunto(s)
Transformación Celular Neoplásica , Intestinos , Carcinogénesis , Humanos , Oncogenes , Células Madre
14.
Gastroenterology ; 161(3): 924-939.e11, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090884

RESUMEN

BACKGROUND & AIMS: Tissue metaplasia is uncommon in adults because established cis-element programs resist rewiring. In Barrett's esophagus, the distal esophageal mucosa acquires a predominantly intestinal character, with notable gastric features, and is predisposed to developing invasive cancers. We sought to understand the chromatin underpinnings of Barrett's metaplasia and why it commonly displays simultaneous gastric and intestinal properties. METHODS: We profiled cis-regulatory elements with active histone modifications in primary human biopsy materials using chromatin immunoprecipitation followed by DNA sequencing. Mutations in Barrett's esophagus were examined in relation to tissue-specific enhancer landscapes using a random forest machine-learning algorithm. We also profiled open chromatin at single-cell resolution in primary Barrett's biopsy specimens using the assay for transposase-accessible chromatin. We used 1- and 2-color immunohistochemistry to examine protein expression of tissue-restricted genes. RESULTS: Barrett's esophagus bears epigenome fingerprints of human stomach and intestinal columnar, but not esophageal squamous, epithelia. Mutational patterns were best explained as arising on the epigenome background of active gastric cis-elements, supporting the view that adjoining stomach epithelium is a likely tissue source. Individual cells in Barrett's metaplasia coexpress gastric and intestinal genes, reflecting concomitant chromatin access at enhancers ordinarily restricted to one or the other epithelium. Protein expression of stomach-specific mucins; CLDN18; and a novel gastric marker, ANXA10, showed extensive tissue and subclonal heterogeneity of dual stomach-intestinal cell states. CONCLUSIONS: These findings reveal mixed and dynamic tissue-restricted chromatin states and phenotypic heterogeneity in Barrett's esophagus. Pervasive intragland variation argues against stem-cell governance of this phenotype.


Asunto(s)
Esófago de Barrett/genética , Esófago de Barrett/patología , Plasticidad de la Célula , Ensamble y Desensamble de Cromatina , Epigenoma , Mucosa Esofágica/patología , Células Madre/patología , Linaje de la Célula , Secuenciación de Inmunoprecipitación de Cromatina , Análisis Mutacional de ADN , Elementos de Facilitación Genéticos , Epigenómica , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Metaplasia , Mutación , Fenotipo , Análisis de la Célula Individual
15.
Commun Biol ; 4(1): 332, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712729

RESUMEN

A hallmark of cells comprising the superficial zone of articular cartilage is their expression of lubricin, encoded by the Prg4 gene, that lubricates the joint and protects against the development of arthritis. Here, we identify Creb5 as a transcription factor that is specifically expressed in superficial zone articular chondrocytes and is required for TGF-ß and EGFR signaling to induce Prg4 expression. Notably, forced expression of Creb5 in chondrocytes derived from the deep zone of the articular cartilage confers the competence for TGF-ß and EGFR signals to induce Prg4 expression. Chromatin-IP and ATAC-Seq analyses have revealed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, that display an open chromatin conformation specifically in superficial zone articular chondrocytes; and which work in combination with a more distal regulatory element to drive induction of Prg4 by TGF-ß. Our results indicate that Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.


Asunto(s)
Cartílago Articular/metabolismo , Condrocitos/metabolismo , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/metabolismo , Proteoglicanos/metabolismo , Animales , Sitios de Unión , Cartílago Articular/efectos de los fármacos , Bovinos , Células Cultivadas , Condrocitos/efectos de los fármacos , Proteína de Unión al Elemento de Respuesta al AMP Cíclico/genética , Regulación de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteoglicanos/genética , Factor de Crecimiento Transformador alfa/farmacología , Factor de Crecimiento Transformador beta2/farmacología
16.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653947

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify nongenetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Estabilidad de Enzimas , Glutamato-Amoníaco Ligasa/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética
18.
Annu Rev Physiol ; 83: 405-427, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33234018

RESUMEN

The cardinal properties of adult tissue stem cells are self-renewal and the ability to generate diverse resident cell types. The daily losses of terminally differentiated intestinal, skin, and blood cells require "professional" stem cells to produce replacements. This occurs by continuous expansion of stem cells and their immediate progeny, followed by coordinated activation of divergent transcriptional programs to generate stable cells with diverse functions. Other tissues turn over slowly, if at all, and vary widely in strategies for facultative stem cell activity or interconversion among mature resident cell types (transdifferentiation). Cell fate potential is programmed in tissue-specific configurations of chromatin, which restrict the complement of available genes and cis-regulatory elements, hence allowing specific cell types to arise. Using as a model the transcriptional and chromatin basis of cell differentiation and dedifferentiation in intestinal crypts, we discuss here how self-renewing and other tissues execute homeostatic and injury-responsive stem cell activity.


Asunto(s)
Plasticidad de la Célula/genética , Plasticidad de la Célula/fisiología , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Intestinos/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Humanos
19.
Nat Cell Biol ; 22(9): 1033-1041, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32884148

RESUMEN

Intestinal stem and progenitor cells replicate and differentiate in distinct compartments, influenced by Wnt, BMP, and other subepithelial cues. The cellular sources of these signals were long obscure because intestinal mesenchyme was insufficiently characterised. In this Review, we discuss how recent mRNA profiles of mouse and human intestinal submucosa, coupled with fine-resolution microscopy and gene and cell disruptions, reveal a coherent picture of an organised tissue carrying cells with distinct molecular properties and functions.


Asunto(s)
Mucosa Intestinal/fisiología , Nicho de Células Madre/fisiología , Animales , Humanos , Mesodermo/fisiología , ARN Mensajero/genética , Proteínas Wnt/genética
20.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G189-G196, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32628072

RESUMEN

To fulfill the lifelong need to supply diverse epithelial cells, intestinal stem cells (ISCs) rely on executing accurate transcriptional programs. This review addresses the mechanisms that control those programs. Genes that define cell behaviors and identities are regulated principally through thousands of dispersed enhancers, each individually <1 kb long and positioned from a few to hundreds of kilobases away from transcription start sites, upstream or downstream from coding genes or within introns. Wnt, Notch, and other epithelial control signals feed into these cis-regulatory DNA elements, which are also common loci of polymorphisms and mutations that confer disease risk. Cell-specific gene activity requires promoters to interact with the correct combination of signal-responsive enhancers. We review the current state of knowledge in ISCs regarding active enhancers, the nucleosome modifications that may enable appropriate and hinder inappropriate enhancer-promoter contacts, and the roles of lineage-restricted transcription factors.


Asunto(s)
Diferenciación Celular/fisiología , Epigénesis Genética , Intestinos/citología , Células Madre/fisiología , Animales , Regulación de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...