Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fundam Clin Pharmacol ; 34(1): 120-130, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31286572

RESUMEN

Potential drug-drug interactions of the antitumor drug abiraterone and the macrolide antibiotic erythromycin were studied at the stage of cytochrome P450 3A4 (CYP3A4) biotransformation. Using differential spectroscopy, we have shown that abiraterone is a type II ligand of CYP3A4. The dependence of CYP3A4 spectral changes on the concentration of abiraterone is sigmoidal, which indicates cooperative interactions of CYP3A4 with abiraterone; these interactions were confirmed by molecular docking. The dissociation constant (Kd ) and Hill coefficient (h) values for the CYP3A4-abiraterone complex were calculated as 3.8 ± 0.1 µM and 2.3 ± 0.2, respectively. An electrochemical enzymatic system based on CYP3A4 immobilized on a screen-printed electrode was used to show that abiraterone acts as a competitive inhibitor toward erythromycin N-demethylase activity of CYP3A4 (apparent Ki  = 8.1 ± 1.2 µM), while erythromycin and its products of enzymatic metabolism do not affect abiraterone N-oxidation by CYP3A4. In conclusion, the inhibition properties of abiraterone toward CYP3A4-dependent N-demethylation of erythromycin and the biologically inert behavior of erythromycin toward abiraterone hydroxylation were demonstrated.


Asunto(s)
Androstenos/farmacología , Antibacterianos/farmacocinética , Citocromo P-450 CYP3A/efectos de los fármacos , Eritromicina/farmacocinética , Antineoplásicos/farmacología , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Interacciones Farmacológicas , Humanos , Hidroxilación , Simulación del Acoplamiento Molecular
2.
Biochimie ; 162: 156-166, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31034920

RESUMEN

The aim of the present work was to establish the thermodynamic and functional differences in the protein-protein interactions between the components of the P450-dependent mitochondrial (mit) and microsomal (mic) monooxygenase systems using 12 different isoforms of cytochromes P450 and two redox partners, NADPH-dependent cytochrome P450 reductase (CPR) and adrenodoxin (Adx). Comparative analysis of the affinity, thermodynamics, enzymatic activity and the ability for one-electron reduction has been carried out. The study of protein-protein interactions to determine the equilibrium dissociation constants (Kd) was performed using surface plasmon resonance (SPR) biosensor Biacore 3000. We demonstrated that CPR and Adx interacted with both, micCYPs and mitCYPs, with different affinities (Kd values ranged from 0.01 to 2 µM). All complexes of microsomal (micCYP) and mitochondrial (mitCYP) cytochrome P450 with redox partners can be divided into three groups depending on the prevalent role of either enthalpy or entropy contribution. About 90% of CYP/redox partner complexes were entropy-driven, while the contribution of enthalpy and entropy differed significantly in case of mitCYP/Adx complexes. The CYP11A1/Adx complex was enthalpy-driven, while CYP11B1/Adx and CYP11B2/Adx complexes were entropy-driven. Thermodynamic discrimination of mitCYPs/Adx complexes is likely associated with the different functional impact of CYP11A1 and CYP11B. The exception was the enthalpy-entropy-driven (mixed type) CYP21A2/Adx complex. CPR and Adx were able to transfer the first electron to micCYPs while mitCYPs demonstrated high specificity to Adx. Productive catalysis for mitCYPs observed only in the presence of Adx/AdR pair, while in case of steroidogenic micCYPs (CYP17A1, CYP19A1, and CYP21A2) it was found either in the presence of a CPR or an Adx/AdR pair. From the evolutionary point of view, the type 1 electron transport system (mitCYPs, Adx and NADPH-dependent adrenodoxin reductase (AdR)) increased the specialization of protein-protein interactions (PPI) significantly, which was accompanied by an increase in the specificity of electron transfer. In contrast, the evolution of the type 2 electron transport system (micCYPs and CPR) led to an increase in versatility of PPI as demonstrated for steroidogenic microsomal cytochrome P450s. Our data enhance the current understanding of molecular recognition and summarize qualitative and thermodynamic characteristics of protein-protein interactions in the P450-dependent mitochondrial and microsomal monooxygenase systems.


Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Dominios y Motivos de Interacción de Proteínas , Adrenodoxina/química , Animales , Transporte de Electrón , Ferredoxina-NADP Reductasa/química , Humanos , Isoenzimas/química , Modelos Moleculares , NADPH-Ferrihemoproteína Reductasa/química , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie/métodos , Termodinámica
3.
J Struct Biol ; 191(2): 112-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26166326

RESUMEN

Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with high affinity and specificity. Usually, they are experimentally selected using the SELEX method. Here, we describe an approach toward the in silico selection of aptamers for proteins. This approach involves three steps: finding a potential binding site, designing the recognition and structural parts of the aptamers and evaluating the experimental affinity. Using this approach, a set of 15-mer aptamers for cytochrome P450 51A1 was designed using docking and molecular dynamics simulation. An experimental evaluation of the synthesized aptamers using SPR biosensor showed that these aptamers interact with cytochrome P450 51A1 with Kd values in the range of 10(-6)-10(-7) M.


Asunto(s)
Aptámeros de Nucleótidos/química , Sistema Enzimático del Citocromo P-450/química , Sitios de Unión , Modelos Moleculares , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...