Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712299

RESUMEN

Recent adaptive radiations provide evolutionary case studies, which provide the context to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetics as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotske represent the most extensive radiation described for the charr genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages with little evidence of hybridization. We also find that specific selection on thyroid signaling and craniofacial genes forms a genomic basis for the radiation. Thyroid hormone is further implicated in subsequent lineage partitioning events. These results delineate a clear genetic basis for the diversification of specialized lineages, and highlight the role of developmental mechanisms in shaping the forms generated during adaptive radiation.

2.
J Evol Biol ; 36(10): 1471-1483, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37731226

RESUMEN

The streams draining volcanic landscapes are often characterized by a complex series of factors that negatively affect hydrobionts and lead to declines in their populations. However, in a number of cases, a range of rapid adaptive changes ensure the resilience of hydrobiont populations. Here, we present both field and experimental data shedding light on the physiological basis of adaptation to heavy metal contamination in populations of Dolly Varden charr (Salvelinus malma) differing in duration of isolation in volcanic streams. The study reveals that isolated populations have a physiological phenotype that distinguishes them from populations inhabiting clean waters. They are characterized by a hyperthyroid status accompanied by an increased metabolic rate, elevated activity of antioxidant enzymes, decreased ionic conductivity of tissues and reduced stored energy reserves. Our experimental data reveal that hyperthyroidism is an adaptive characteristic enhancing the resistance to heavy metal contamination and shaping the evolution of these populations. The similarity of physiological, developmental and morphological changes in isolated populations suggests a common source and mechanisms underpinning this case of 'evolutionary rescue'. Thus, populations of S. malma trapped in volcanic streams represent a genuine case of rapid endocrine-driven adaptation to changing environmental stimuli.

3.
J Exp Biol ; 226(14)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37357638

RESUMEN

Neotropical cichlids demonstrate an enormous diversity of pigment patterns, a morphological trait that plays an important role in adaptation and speciation. It has been suggested that alterations of the activity of the thyroid axis, one of the main endocrine axes regulating fish ontogeny, are involved in the development and diversification of pigment patterns in Neotropical cichlids. To test this hypothesis, we assessed thyroid hormone developmental dynamics and pigment patterning, and experimentally induced hyperthyroidism and hypothyroidism at different developmental stages in the convict cichlid, Amatitlania nigrofasciata, and blue-eye cichlid, Cryptoheros spilurus. We found that the two species display a similar type of coloration development and similar reactions to changes of thyroid hormone level, but species-specific differences in hormonal dynamics and thyroid hormone responsiveness. These findings indicate that thyroid hormone is a necessary but not sufficient signal to induce the transition from larval to juvenile coloration, and is a component of a complex, concerted endocrine cascade that drives skin development.


Asunto(s)
Cíclidos , Animales , Cíclidos/fisiología , Hormonas Tiroideas , Adaptación Fisiológica
4.
PLoS One ; 16(10): e0258536, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34653206

RESUMEN

Factors and mechanisms promoting resource-based radiation in animals still represent a main challenge to evolutionary biology. The modifications of phenotype tied with adaptive diversification may result from an environmentally related shift having occurred at the early stage of development. Here, we study the role of temperature dynamics on the reproductive sites in the early-life divergence and adaptive radiation of the salmonid fish Salvelinus malma dwelling in the Lake Kronotskoe basin (North-East Asia). Local sympatric charr ecomorphs demonstrate strict homing behaviour guiding the preordained distribution along tributaries and, hence, further development under different temperatures. We thoroughly assessed the annual temperature dynamics at the spawning grounds of each morph as compared to an ancestral anadromous morph. Then we carried out an experimental rearing of both under naturally diverging and uniformed temperatures. To compare the morphs' development under the dynamically changing temperatures, we have designed a method based on calculating the accumulated heat by the Arrhenius equation. The proposed equation shows a strong predictive power and, at the same time, is not bias-susceptible when the developmental temperature approximates 0°C. The temperature was found to significantly affect the charrs' early ontogeny, which underlies the divergence of developmental and growth rates between the morphs, as well as morph-specific ontogenetic adaptations to the spawning site's temperatures. As opposed to the endemic morphs from Lake Kronotskoe, the anadromous S. malma, being unexposed to selection оn highly specific reproduction conditions, showed a wide temperature tolerance, Our findings demonstrate that the hatch, onset timing of external feeding, and size dissimilarities between the sympatric morphs reveal themselves during the development under contrast temperatures. As a result of the observed developmental disparities, the morphs occupy specific definitive foraging niches in the lake.


Asunto(s)
Adaptación Fisiológica , Salmonidae/crecimiento & desarrollo , Animales , Ecosistema , Lagos , Salmonidae/fisiología , Estaciones del Año , Temperatura
5.
J Anim Ecol ; 90(4): 1004-1019, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33481247

RESUMEN

Adaptive radiation in fishes has been actively investigated over the last decades. Along with numerous well-studied cases of lacustrine radiation, some examples of riverine sympatric divergence have been recently discovered. In contrast to the lakes, the riverine conditions do not provide evident stability in the ecological gradients. Consequently, external factors triggering the radiation, as well as developmental mechanisms underpinning it, remain unclear. Herein, we present the comprehensive study of external and internal drivers of the riverine adaptive divergence of the salmonid fish Salvelinus malma. In the Kamchatka River, north-east Asia, this species splits in the reproductively isolated morphs that drastically differ in ecology and morphology: the benthivorous Dolly Varden (DV) and the piscivorous stone charr (SC). To understand why and how these morphs originated, we performed a series of field and experimental work, including common-garden rearing, comparative ontogenetic, physiological and endocrinological analyses, hormonal 'engineering' of phenotypes and acute toxicological tests. We revealed that the type of spawning ground acts as the decisive factor driving the radiation of S. malma. In contrast to DV spawning in the leaf krummholz zone, SC reproduces in the zone of coniferous forest, which litter has a toxic impact on developing fishes. SC enhances resistance to the toxicants via metabolism acceleration provided by the elevated thyroid hormone expenditure. These physiological changes lead to the multiple heterochronies resulting in a specific morphology and ecology of SC. Salvelinus malma represents a notable example of how the thyroid axis contributes to the generation of diverse phenotypic outcomes underlying the riverine sympatric divergence. Our findings, along with the paleoecology data concerning spruce forest distribution during the Pleistocene, provide an opportunity to reconstruct a scenario of S. malma divergence. Taken together, obtained results with the data of the role of thyroid hormones in the ontogeny and diversification of fishes contribute a resource to consider the thyroid axis as a prime director orchestrating the phenotypic plasticity promoting evolutionary diversification under the changing environmental conditions.


Asunto(s)
ADN Mitocondrial , Salmonidae , Animales , Lagos , Glándula Tiroides , Trucha
6.
Evol Dev ; 21(1): 3-15, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239104

RESUMEN

The Mesoamerican cichlids display a spectacular diversity of pigment patterns, which serve a variety of functions and serve as a strong selective trait for this lineage. The development and variation of coloration in the Mesoamerican cichlids have been detailed by several groups. In particular, Rícan, Musilová, Muska, and Novák () and Rícan, Piálek, Dragová, and Novák () determined homology of pattern and revealed four alternative types of coloration and their ontogeny. In this work, this group posed an "ontogenetic timing hypothesis" proposing heterochronic shifts underlying major transitions in the evolution of the Mesoamerican cichlids. Here, we experimentally test this hypothesis by experimentally altering timing of pigment pattern formation in the convict cichlid Amatitlania nigrofasciata, a member of the Mesoamerican cichlids, via manipulations of thyroid hormone (TH) function. The response of different pigment cell lineages to TH-perturbations revealed that the transition from larval to juvenile coloration in the convict cichlid is under the control of TH-signaling. Importantly, hormonally induced changes in the timing of pigment cell lineages' development resulted in shifts of coloration ontogeny type observed between lineages and led to the appearance of phenotypes mimicking those in phylogenetically close and distant species. Thus, our findings support the hypothesis that simple changes in ontogenetic timing underlies species specific patterns in pigmentation and provide new perspectives for studying the role of endocrine signaling in the evolution of cichlids.


Asunto(s)
Cíclidos/genética , Cíclidos/fisiología , Pigmentación , Animales , Evolución Biológica , Cíclidos/crecimiento & desarrollo , Femenino , Masculino , Transducción de Señal , Hormonas Tiroideas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA