Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Infect Dis ; 142: 106994, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447753

RESUMEN

OBJECTIVES: Despite successful human immunodeficiency virus (HIV) control with combination antiretroviral therapy (cART), individuals with HIV still face health risks, including cancers, cardiovascular and neurocognitive diseases. An HIV protein, Tat, is potentially involved in these HIV-related diseases. Previous studies demonstrated circulating Tat in the blood of untreated people with HIV. Here, we measured Tat levels in the serum of cART-treated people with HIV to examine the effect of cART on Tat production. METHODS: Serum samples from 63 HIV-positive and 20 HIV-seronegative individuals were analyzed using an ELISA assay that detected Tat concentrations above 2.5 ng/mL. RESULTS: Among HIV-positive individuals, the Tat level ranged from 0 to 14 ng/mL. 25.4% (16 out of 63) exceeded the 2.5 ng/mL cut-off, with a median HIV Tat level of 4.518 [3.329-8.120] ng/mL. No correlation was revealed between Tat levels and CD4+ T cell counts, serum HIV RNA, p24 antigen, or anti-Tat levels. CONCLUSIONS: Despite cART, circulating HIV Tat persists and may contribute to HIV-related diseases. This emphasizes the need for further research on the mechanisms of Tat action in non-infected cells where it can penetrate upon circulation in the blood.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , VIH-1/genética , Linfocitos T CD4-Positivos , Recuento de Linfocito CD4
2.
J Med Virol ; 96(2): e29423, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38285479

RESUMEN

Despite the success of combination antiretroviral therapy, people living with human immunodeficiency virus (HIV) still have an increased risk of Epstein-Barr virus (EBV)-associated B cell malignancies. In the HIV setting, B cell physiology is altered by coexistence with HIV-infected cells and the chronic action of secreted viral proteins, for example, HIV-1 Tat that, once released, efficiently penetrates noninfected cells. We modeled the chronic action of HIV-1 Tat on B cells by ectopically expressing Tat or TatC22G mutant in two lymphoblastoid B cell lines. The RNA-sequencing analysis revealed that Tat deregulated the expression of hundreds of genes in B cells, including the downregulation of a subset of major histocompatibility complex (MHC) class II-related genes. Tat-induced downregulation of HLA-DRB1 and HLA-DRB5 genes led to a decrease in HLA-DR surface expression; this effect was reproduced by coculturing B cells with Tat-expressing T cells. Chronic Tat presence decreased the NF-ᴋB pathway activity in B cells; this downregulated NF-ᴋB-dependent transcriptional targets, including MHC class II genes. Notably, HLA-DRB1 and surface HLA-DR expression was also decreased in B cells from people with HIV. Tat-induced HLA-DR downregulation in B cells impaired EBV-specific CD4+ T cell response, which contributed to the escape from immune surveillance and could eventually promote B cell lymphomagenesis in people with HIV.


Asunto(s)
Linfocitos B , Infecciones por Virus de Epstein-Barr , Infecciones por VIH , Linfoma , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Humanos , Regulación hacia Abajo , Herpesvirus Humano 4/genética , Infecciones por VIH/genética , VIH-1/genética , Cadenas HLA-DRB1 , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
3.
Cells ; 12(18)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759535

RESUMEN

Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.


Asunto(s)
Endocitosis , Endocitosis/efectos de los fármacos
4.
NAR Cancer ; 5(3): zcad049, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37750169

RESUMEN

Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.

5.
J Med Virol ; 95(3): e28633, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36866703

RESUMEN

Burkitt lymphoma (BL) is a B cell malignancy associated with the Epstein-Barr virus (EBV). Most BL cases are characterized by a t(8;14) chromosomal translocation involving the MYC oncogene and the immunoglobulin heavy chain gene (IGH). The role of EBV in promoting this translocation remains largely unknown. Here we provide the experimental evidence that EBV reactivation from latency leads to an increase in the proximity between the MYC and IGH loci, otherwise located far away in the nuclear space both in B-lymphoblastoid cell lines and in patients' B-cells. Specific DNA damage within the MYC locus, followed by the MRE11-dependent DNA repair plays a role in this process. Using a CRISPR/Cas9-based B cell model to induce specific DNA double strand breaks in MYC and IGH loci, we have shown that the MYC-IGH proximity induced by EBV reactivation leads to an increased t(8;14) translocation frequency.


Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Humanos , Herpesvirus Humano 4/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Genes de las Cadenas Pesadas de las Inmunoglobulinas
6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674896

RESUMEN

Pulmonary fibrosis is a common and threatening post-COVID-19 complication with poorly resolved molecular mechanisms and no established treatment. The plasminogen activator system, including urokinase (uPA) and urokinase receptor (uPAR), is involved in the pathogenesis of COVID-19 and contributes to the development of lung injury and post-COVID-19 pulmonary fibrosis, although their cellular and molecular underpinnings still remain obscure. The aim of the current study was to assess the role of uPA and uPAR in the pathogenesis of pulmonary fibrosis. We analyzed uPA and uPAR expression in human lung tissues from COVID-19 patients with pulmonary fibrosis using single-cell RNA-seq and immunohistochemistry. We modeled lung fibrosis in Plau-/- and Plaur-/- mice upon bleomycin instillation and explored the effect of uPAR downregulation in A549 and BEAS-2B lung epithelial cells. We found that uPAR expression drastically decreased in the epithelial airway basal cells and monocyte/macrophage cells, whereas uPA accumulation significantly increased in tissue samples of COVID-19 patients. Lung injury and fibrosis in Plaur-/- vs. WT mice upon bleomycin instillation revealed that uPAR deficiency resulted in pro-fibrogenic uPA accumulation, IL-6 and ACE2 upregulation in lung tissues and was associated with severe fibrosis, weight loss and poor survival. uPAR downregulation in A549 and BEAS-2B was linked to an increased N-cadherin expression, indicating the onset of epithelial-mesenchymal transition and potentially contributing to pulmonary fibrosis. Here for the first time, we demonstrate that plasminogen treatment reversed lung fibrosis in Plaur-/- mice: the intravenous injection of 1 mg of plasminogen on the 21st day of bleomycin-induced fibrosis resulted in a more than a two-fold decrease in the area of lung fibrosis as compared to non-treated mice as evaluated by the 42nd day. The expression and function of the plasminogen activator system are dysregulated upon COVID-19 infection, leading to excessive pulmonary fibrosis and worsening the prognosis. The potential of plasminogen as a life-saving treatment for non-resolving post-COVID-19 pulmonary fibrosis warrants further investigation.


Asunto(s)
COVID-19 , Lesión Pulmonar , Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , COVID-19/complicaciones , Fibrosis , Plasminógeno , Bleomicina/toxicidad
7.
Gene Ther ; 30(1-2): 167-171, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-32999452

RESUMEN

B-cell lines and primary PBMCs are notoriously hard to transfect, thus making genome editing, ectopic gene expression, or gene silencing experiments particularly tedious. Here we propose a novel efficient and reproducible protocol for electrotransfection of lymphoblastoid, B-cell lymphoma, leukemia cell lines, and B cells from PBMCs. The proposed protocol requires neither costly equipment nor expensive reagents; it can be used with small or large plasmids. Transfection and viability rates of about 79% and 58%, respectively, have been routinely achieved by optimizing the salt concentration in the electrotransfection medium and the amount of plasmid used. A validation of the protocol was obtained via the generation of a TP53-/- RPMI8866 lymphoblastoid cell line which should prove useful in future hematological and blood cancer studies.


Asunto(s)
Expresión Génica Ectópica , Edición Génica , Humanos , Edición Génica/métodos , Transfección , Línea Celular , Plásmidos
8.
Int J Cancer ; 152(7): 1288-1289, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36510743
10.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555850

RESUMEN

Uncovering the risk factors for acute respiratory disease coronavirus 2019 (COVID-19) severity may help to provide a valuable tool for early patient stratification and proper treatment implementation, improving the patient outcome and lowering the burden on the healthcare system. Here we report the results of a single-center retrospective cohort study on 151 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected symptomatic hospitalized adult patients. We assessed the association of several blood test measurements, soluble urokinase receptor (uPAR) serum level and specific single nucleotide polymorphisms of ACE (I/D), NOS3 (rs2070744, rs1799983), SERPINE1 (rs1799768), PLAU (rs2227564) and PLAUR (rs344781, rs2302524) genes, with the disease severity classified by the percentage of lung involvement on computerized tomography scans. Our findings reveal that the T/C genotype of PLAUR rs2302524 was independently associated with a less severe lung damage (odds ratio 0.258 [0.071-0.811]). Along with high C-reactive protein, fibrinogen and soluble uPAR serum levels turned out to be independently associated with more severe lung damage in COVID-19 patients. The identified factors may be further employed as predictors of a possibly severe COVID-19 clinical course.


Asunto(s)
COVID-19 , Pulmón , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Adulto , Humanos , COVID-19/genética , Genotipo , Pulmón/patología , Receptores del Activador de Plasminógeno Tipo Uroquinasa/sangre , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Estudios Retrospectivos , SARS-CoV-2
11.
PeerJ ; 10: e13986, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275462

RESUMEN

An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.


Asunto(s)
VIH-1 , Linfoma de Células B , Humanos , VIH-1/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Expresión Génica Ectópica , Linfoma de Células B/genética , Expresión Génica
12.
Cancers (Basel) ; 14(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291894

RESUMEN

Chromosomal translocations are products of the illegitimate repair of DNA double-strand breaks (DSBs). Their formation can bring about significant structural and molecular changes in the cell that can be physiologically and pathologically relevant. The induced changes may lead to serious and life-threatening diseases such as cancer. As a growing body of evidence suggests, the formation of chromosomal translocation is not only affected by the mere close spatial proximity of gene loci as potential translocation partners. Several factors may affect formation of chromosomal translocations, including chromatin motion to the potential sources of DSBs in the cell. While these can be apparently random events, certain chromosomal translocations appear to be cell-type-specific. In this review, we discuss how chromosomal translocations are formed and explore how different cellular factors contribute to their formation.

13.
Front Mol Neurosci ; 15: 865858, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875662

RESUMEN

Urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored receptor of urokinase (uPA), which is involved in brain development, nerve regeneration, wound healing and tissue remodeling. We have recently shown that Plaur, which encodes uPAR, is an early response gene in murine brain. Assumingly, diverse functions of Plaur might be attributed to hypothetical, unidentified microRNAs encoded within introns of the Plaur gene. Using a bioinformatic approach we identified novel small RNAs within the Plaur gene and named them Plaur-miR1-3p and Plaur-miR1-5p. We confirmed Plaur-dependent expression of Plaur-miR1-3p and Plaur-miR1-5p in the mouse brain and mouse neuroblastoma Neuro2a cells. Utilizing an in silico MR-microT algorithm in DianaTools we selected two target genes - Mef2d and Emx2 with the highest binding scores to small RNAs selected from identified Plaur-Pre-miR1. Furthermore, sequencing of mouse brain samples for Plaur-miR1-5p target genes revealed two more genes-Nrip3 and Snrnp200. The expression of Emx2, Mef2d, and Snrnp200 in the mouse brain and Mef2d and Snrnp200 in Neuro2a cells correlated with expression of Plaur and small RNAs-Plaur-miR1-3p and Plaur-miR1-5p. Finally, we demonstrated elevated MEF2D protein expression in the mouse brain after Plaur induction and displayed activating effects of Plaur-miR1-5p on Mef2d expression in Neuro2a cells using Luciferase reporter assay. In conclusion, we have identified Plaur-miR1-3p and Plaur-miR1-5p as novel small RNAs encoded in the Plaur gene. This finding expands the current understanding of Plaur function in brain development and functioning.

14.
PLoS One ; 17(2): e0264072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213582

RESUMEN

COVID-19 pandemic has posed a severe healthcare challenge calling for an integrated approach in determining the clues for early non-invasive diagnostics of the potentially severe cases and efficient patient stratification. Here we analyze the clinical, laboratory and CT scan characteristics associated with high risk of COVID-19-related death outcome in the cohort of severely-ill patients in Russia. The data obtained reveal that elevated dead lymphocyte counts, decreased early apoptotic lymphocytes, decreased CD14+/HLA-Dr+ monocytes, increased expression of JNK in PBMCs, elevated IL-17 and decreased PAI-1 serum levels are associated with a high risk of COVID-19-related mortality thus suggesting them to be new prognostic factors. This set of determinants could be used as early predictors of potentially severe course of COVID-19 for trials of prevention or timely treatment.


Asunto(s)
COVID-19/mortalidad , Interleucina-17/sangre , Inhibidor 1 de Activador Plasminogénico/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/sangre , Femenino , Humanos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Proyectos Piloto , Pronóstico , Federación de Rusia/epidemiología , Adulto Joven
15.
Cancers (Basel) ; 14(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35205745

RESUMEN

uPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks. We have recently shown that uPAR downregulation in neuroblastoma promotes epithelial-mesenchymal transition (EMT), potentially associated with metastasis and chemoresistance. We used data mining to evaluate the role of uPAR expression in primary and relapsed human neuroblastomas. To model the decreased uPAR expression, we targeted uPAR using CRISPR/Cas9 and shRNA in neuroblastoma Neuro2a cells and evaluated their chemosensitivity in vitro as well as tumor growth and metastasis in vivo. We demonstrate that the initially high PLAUR expression predicts poor survival in human neuroblastoma. However, relapsed neuroblastomas have a significantly decreased PLAUR expression. uPAR targeting in neuroblastoma Neuro2a cells leads to p38 activation and an increased p21 expression (suggesting a dormant phenotype). The dormancy in neuroblastoma cells can be triggered by the disruption of uPAR-integrin interaction. uPAR-deficient cells are less sensitive to cisplatin and doxorubicin treatment and exhibit lower p53 activation. Finally, low uPAR-expressing Neuro2a cells formed smaller primary tumors, but more frequent metastasis in mice. To the best of our knowledge, this is the first study revealing the pathological role of dormant uPAR-deficient cancer cells having a chemoresistant and motile phenotype.

16.
Biochemistry (Mosc) ; 86(10): 1326-1341, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34903157

RESUMEN

Neurotrophin receptors regulate neuronal survival and network formation, as well as synaptic plasticity in the brain via interaction with their ligands. Here, we examined early changes in the expression of neurotrophin receptor genes Ntk1 (TrkA), Ntrk2 (TrkB), Ntrk3 (TrkC), Ngfr (p75NTR) and miRNAs that target theses gens in the mouse brain after induction of seizure activity by pentylenetetrazol. We found that expression of Ntrk3 and Ngfr was upregulated in the cortex and the hippocampus 1-3 hours after the seizures, while Ntrk2 expression increased after 3-6 hours in the anterior cortex and after 1 and 6 hours in the hippocampus. At the same time, the ratio of Bcl-2/Bax signaling proteins increased in the anterior and posterior cortex, but not in the hippocampus, suggesting the activation of anti-apoptotic signaling. Expression of miRNA-9 and miRNA-29a, which were predicted to target Ntrk3, was upregulated in the hippocampus 3 hours after pentylenetetrazol injection. Therefore, early cellular response to seizures in the brain includes induction of the Ntrk2, Ntrk3, Ngfr, miRNA-9, and miRNA-29a expression, as well as activation of Bcl-2 and Bax signaling pathways, which may characterize them as important mediators of neuronal adaptation and survival upon induction of the generalized brain activity.


Asunto(s)
Encéfalo/efectos de los fármacos , MicroARNs/genética , Neuronas/efectos de los fármacos , Pentilenotetrazol/farmacología , Convulsiones/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/biosíntesis , Neuronas/metabolismo , Neuronas/patología , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/patología
17.
Biochemistry (Mosc) ; 86(7): 785-799, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34284705

RESUMEN

By 2003, the Human Genome project had been completed; however, it turned out that 97% of genome sequences did not encode proteins. The explanation came later when it was found the untranslated DNA contain sequences for short microRNAs (miRNAs) and long noncoding RNAs that did not produce any mRNAs or tRNAs, but instead were involved in the regulation of gene expression. Initially identified in the cytoplasm, miRNAs have been found in all cell compartments, where their functions are not limited to the degradation of target mRNAs. miRNAs that are secreted into the extracellular space as components of exosomes or as complexes with proteins, participate in morphogenesis, regeneration, oncogenesis, metastasis, and chemoresistance of tumor cells. miRNAs play a dual role in oncogenesis: on one hand, they act as oncogene suppressors; on the other hand, they function as oncogenes themselves and inactivate oncosuppressors, stimulate tumor neoangiogenesis, and mediate immunosuppressive processes in the tumors, The review presents current concepts of the miRNA biogenesis and their functions in the cytoplasm and nucleus with special focus on the noncanonical mechanisms of gene regulation by miRNAs and involvement of miRNAs in oncogenesis, as well as the authors' opinion on the role of miRNAs in metastasis and formation of the premetastatic niche.


Asunto(s)
MicroARNs/metabolismo , Neoplasias/metabolismo , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética
18.
Cancers (Basel) ; 12(6)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517128

RESUMEN

Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.

19.
Cells ; 9(5)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354054

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cellular proliferation and survival which controls cellular response to different stresses, including viral infection. HIV-1 interferes with the mTORC1 pathway at every stage of infection. At the same time, the host cells rely on the mTORC1 pathway and autophagy to fight against virus replication and transmission. In this review, we will provide the most up-to-date picture of the role of the mTORC1 pathway in the HIV-1 life cycle, latency and HIV-related diseases. We will also provide an overview of recent trends in the targeting of the mTORC1 pathway as a promising strategy for HIV-1 eradication.


Asunto(s)
VIH-1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/fisiología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Interacciones Huésped-Patógeno , Humanos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral/fisiología
20.
J Cell Physiol ; 235(9): 6268-6286, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31990070

RESUMEN

The urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase-type plasminogen activator receptor (uPAR), urokinase-type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA-uPAR interaction can lead to the activation of transcription factors, mitogen-activated protein kinase signaling pathways and RTK cascades. Elevated expression of uPA and uPAR is markedly associated with cancer progression and metastasis and correlates with a poor prognosis in clinics. Targeting the urokinase system has proved to be effective in experimental models in vitro and in vivo, however, in clinics the inhibition of the uPA/uPAR system has fallen short of expectations, suggesting that the question of the functional relevance of uPA/uPAR system is far from being moot. Recently, using CRISPR/Cas9 technology, we have shown that uPAR knockout decreases the proliferation of neuroblastoma Neuro2a cells in vitro. In the present study we demonstrate that uPAR expression is essential for maintaining the epithelial phenotype in Neuro2a cells and that uPAR silencing promotes epithelial-mesenchymal transition (EMT) and increased cell migration. Accordingly, uPAR knockout results in the downregulation of epithelial markers (E-cadherin, occludin, and claudin-5) and in the increase of mesenchymal markers (N-cadherin, α-smooth muscle actin, and interleukin-6). In search of the molecular mechanism underlying these changes, we identified uPA as a key component. Two key insights emerged as a result of this work: in the absence of uPAR, uPA is translocated into the nucleus where it is presumably involved in the activation of transcription factors (nuclear factor κB and Snail) resulting in EMT. In uPAR-expressing cells, uPAR functions as a uPA "trap" that binds uPA on the cell surface and promotes controlled uPA internalization and degradation in lysosomes.


Asunto(s)
Núcleo Celular/genética , Proteínas de la Membrana/genética , Neuroblastoma/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Humanos , Neuroblastoma/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...