Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cryobiology ; 115: 104881, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38437899

RESUMEN

Cryoprotectant toxicity is a limiting factor for the cryopreservation of many living systems. We were moved to address this problem by the potential of organ vitrification to relieve the severe shortage of viable donor organs available for human transplantation. The M22 vitrification solution is presently the only solution that has enabled the vitrification and subsequent transplantation with survival of large mammalian organs, but its toxicity remains an obstacle to organ stockpiling for transplantation. We therefore undertook a series of exploratory studies to identify potential pretreatment interventions that might reduce the toxic effects of M22. Hormesis, in which a living system becomes more resistant to toxic stress after prior subtoxic exposure to a related stress, was investigated as a potential remedy for M22 toxicity in yeast, in the nematode worm C. elegans, and in mouse kidney slices. In yeast, heat shock pretreatment increased survival by 18-fold after exposure to formamide and by over 9-fold after exposure to M22 at 30 °C; at 0 °C and with two-step addition, treatment with 90% M22 resulted in 100% yeast survival. In nematodes, surveying a panel of pretreatment interventions revealed 3 that conferred nearly total protection from acute whole-worm M22-induced damage. One of these protective pretreatments (exposure to hydrogen peroxide) was applied to mouse kidney slices in vitro and was found to strongly protect nuclear and plasma membrane integrity in both cortical and medullary renal cells exposed to 75-100% M22 at room temperature for 40 min. These studies demonstrate for the first time that endogenous cellular defenses, conserved from yeast to mammals, can be marshalled to substantially ameliorate the toxic effects of one of the most toxic single cryoprotectants and the toxicity of the most concentrated vitrification solution so far described for whole organs.

2.
Bioinformation ; 20(1): 4-10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352912

RESUMEN

Many age-progressive diseases are accompanied by (and likely caused by) the presence of protein aggregation in affected tissues. Protein aggregates are conjoined by complex protein-protein interactions, which remain poorly understood. Knowledge of the proteins that comprise aggregates, and their adherent interfaces, can be useful to identify therapeutic targets to treat or prevent pathology, and to discover small molecules for disease interventions. We present web-based software to evaluate and rank influential proteins and protein-protein interactions based on graph modelling of the cross linked aggregate interactome. We have used two network-graph-based techniques: Leave-One-Vertex-Out (LOVO) and Leave-One-Edge-Out (LOEO), each followed by dimension reduction and calculation of influential vertices and edges using Principal Components Analysis (PCA) implemented as an R program. This method enables researchers to quickly and accurately determine influential proteins and protein-protein interactions present in their aggregate interactome data.

3.
iScience ; 27(1): 108745, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38274404

RESUMEN

Alzheimer's disease (AD) is characterized by peri-neuronal amyloid plaque and intra-neuronal neurofibrillary tangles. These aggregates are identified by the immunodetection of "seed" proteins (Aß1-42 and hyperphosphorylated tau, respectively), but include many other proteins incorporated nonrandomly. Using click-chemistry intra-aggregate crosslinking, we previously modeled amyloid "contactomes" in SY5Y-APPSw neuroblastoma cells, revealing that aspirin impedes aggregate growth and complexity. By an analogous strategy, we now construct amyloid-specific aggregate interactomes of AD and age-matched-control hippocampi. Comparing these interactomes reveals AD-specific interactions, from which neural-network (NN) analyses predict proteins with the highest impact on pathogenic aggregate formation and/or stability. RNAi knockdowns of implicated proteins, in C. elegans and human-cell-culture models of AD, validated those predictions. Gene-Ontology meta-analysis of AD-enriched influential proteins highlighted the involvement of mitochondrial and cytoplasmic compartments in AD-specific aggregation. This approach derives dynamic consensus models of aggregate growth and architecture, implicating highly influential proteins as new targets to disrupt amyloid accrual in the AD brain.

4.
Mol Cell Biochem ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37922111

RESUMEN

Cardiovascular diseases, including myocardial infarction (MI), constitute the leading cause of morbidity and mortality worldwide. Protein-aggregate deposition is a hallmark of aging and neurodegeneration. Our previous study reported that aggregation is strikingly elevated in hearts of hypertensive and aged mice; however, no prior study has addressed MI effects on aggregation in heart or brain. Here, we present novel data on heart and brain aggregation in mice following experimental MI, induced by left coronary artery (LCA) ligation. Infarcted and peri-infarcted heart tissue, and whole cerebra, were isolated from mice at sacrifice, 7 days following LCA ligation. Sham-MI mice (identical surgery without ligation) served as controls. We purified detergent-insoluble aggregates from these tissues, and quantified key protein constituents by high-resolution mass spectrometry (LC-MS/MS). Infarct heart tissue had 2.5- to 10-fold more aggregates than non-infarct or sham-MI heart tissue (each P = 0.001). Protein constituents from MI cerebral aggregates overlapped substantially with those from human Alzheimer's disease brain. Prior injection of mice with mesenchymal stem cell (MSC) exosomes, shown to limit infarct size after LCA ligation, reduced cardiac aggregation ~ 60%, and attenuated markers of endoplasmic reticulum (ER) stress in heart and brain (GRP78, ATF6, P-PERK) by 50-75%. MI also elevated aggregate constituents enriched in Alzheimer's disease (AD) aggregates, such as proteasomal subunits, heat-shock proteins, complement C3, clusterin/ApoJ, and other apolipoproteins. These data provide novel evidence that aggregation is elevated in mouse hearts and brains after myocardial ischemia, leading to cognitive impairment resembling AD, but can be attenuated by exosomes or drug (CDN1163) interventions that oppose ER stress.

5.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895969

RESUMEN

Chronic, low-grade inflammation has been implicated in aging and age-dependent conditions, including Alzheimer's disease, cardiomyopathy, and cancer. One of the age-associated processes underlying chronic inflammation is protein aggregation, which is implicated in neuroinflammation and a broad spectrum of neurodegenerative diseases such as Alzheimer's, Huntington's, and Parkinson's diseases. We screened a panel of bioactive thiadiazolidinones (TDZDs) from our in-house library for rescue of protein aggregation in human-cell and C. elegans models of neurodegeneration. Among the tested TDZD analogs, PNR886 and PNR962 were most effective, significantly reducing both the number and intensity of Alzheimer-like tau and amyloid aggregates in human cell-culture models of pathogenic aggregation. A C. elegans strain expressing human Aß1-42 in muscle, leading to AD-like amyloidopathy, developed fewer and smaller aggregates after PNR886 or PNR962 treatment. Moreover, age-progressive paralysis was reduced 90% by PNR886 and 75% by PNR962, and "healthspan" (the median duration of spontaneous motility) was extended 29% and 62%, respectively. These TDZD analogs also extended wild-type C. elegans lifespan by 15-30% (p < 0.001), placing them among the most effective life-extension drugs. Because the lead drug in this family, TDZD-8, inhibits GSK3ß, we used molecular-dynamic tools to assess whether these analogs may also target GSK3ß. In silico modeling predicted that PNR886 or PNR962 would bind to the same allosteric pocket of inactive GSK3ß as TDZD-8, employing the same pharmacophore but attaching with greater avidity. PNR886 and PNR962 are thus compelling candidate drugs for treatment of tau- and amyloid-associated neurodegenerative diseases such as AD, potentially also reducing all-cause mortality.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37092014

RESUMEN

Protein homeostasis, the balance between protein synthesis and degradation, requires the clearance of misfolded and aggregated proteins and is therefore considered to be an essential aspect of establishing a physiologically effective proteome. Aging alters this balance, termed "proteostasis", resulting in the progressive accumulation of misfolded and aggregated proteins. Defective proteostasis leads to the functional deterioration of diverse regulatory processes during aging and is implicated in the etiology of multiple pathological conditions underlying a variety of neurodegenerative diseases and in age-dependent cardiovascular disease. Detergent-insoluble protein aggregates have been reported by us in both aged and hypertensive hearts. The protein constituents were found to overlap with protein aggregates seen in neurodegenerative diseases such as Alzheimer's disease. Therefore, targeting these protein components of aggregates may be a promising therapeutic strategy for cardiovascular pathologies associated with aging, ischemia, and/or hypertension.

7.
Sci Rep ; 13(1): 2096, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747013

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an inexorably progressive and degenerative disorder of motor neurons with no currently-known cure. Studies to determine the mechanism of neurotoxicity and the impact of ALS-linked mutations (SOD1, FUS, TARDP, C9ORF72, PFN1, TUBA4A and others) have greatly expanded our knowledge of ALS disease mechanisms and have helped to identify potential targets for ALS therapy. Cellular pathologies (e.g., aggregation of mutant forms of SOD1, TDP43, FUS, Ubiqulin2, PFN1, and C9ORF72), mitochondrial dysfunction, neuroinflammation, and oxidative damage are major pathways implicated in ALS. Nevertheless, the selective vulnerability of motor neurons remains unexplained. The importance of tubulins for long-axon infrastructure, and the special morphology and function of motor neurons, underscore the central role of the cytoskeleton. The recent linkage of mutations to the tubulin α chain, TUBA4A, to familial and sporadic cases of ALS provides a new investigative opportunity to shed light on both mechanisms of ALS and the vulnerability of motor neurons. In the current study we investigate TUBA4A, a structural microtubule protein with mutations causal to familial ALS, using molecular-dynamic (MD) modeling of protein structure to predict the effects of each mutation and its overall impact on GTP binding, chain stability, tubulin assembly, and aggregation propensity. These studies predict that each of the reported mutations will cause notable structural changes to the TUBA4A (α chain) tertiary protein structure, adversely affecting its physical properties and functions. Molecular docking and MD simulations indicate certain α chain mutations (e.g. K430N, R215C, and W407X) may cause structural deviations that impair GTP binding, and plausibly prevent or destabilize tubulin polymerization. Furthermore, several mutations (including R320C and K430N) confer a significant increase in predicted aggregation propensity of TUBA4A mutants relative to wild-type. Taken together, these in silico modeling studies predict structural perturbations and disruption of GTP binding, culminating in failure to form a stable tubulin heterocomplex, which may furnish an important pathogenic mechanism to trigger motor neuron degeneration in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Tubulina (Proteína)/genética , Superóxido Dismutasa-1/genética , Simulación del Acoplamiento Molecular , Proteína C9orf72/genética , Mutación , Microtúbulos/metabolismo , Guanosina Trifosfato , Profilinas/genética
8.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555098

RESUMEN

The mammalian 14-3-3 family comprises seven intrinsically unstructured, evolutionarily conserved proteins that bind >200 protein targets, thereby modulating cell-signaling pathways. The presence of 14-3-3 proteins in cerebrospinal fluid provides a sensitive and specific biomarker of neuronal damage associated with Alzheimer's disease (AD), Creutzfeldt−Jakob disease (CJD), spongiform encephalitis, brain cancers, and stroke. We observed significant enrichment of 14-3-3 paralogs G, S, and Z in human brain aggregates diagnostic of AD. We used intra-aggregate crosslinking to identify 14-3-3 interaction partners, all of which were significantly enriched in AD brain aggregates relative to controls. We screened FDA-approved drugs in silico for structures that could target the 14-3-3G/hexokinase interface, an interaction specific to aggregates and AD. C. elegans possesses only two 14-3-3 orthologs, which bind diverse proteins including DAF-16 (a FOXO transcription factor) and SIR-2.1 (a sensor of nutrients and stress), influencing lifespan. Top drug candidates were tested in C. elegans models of neurodegeneration-associated aggregation and in a human neuroblastoma cell-culture model of AD-like amyloidosis. Several drugs opposed aggregation in all models assessed and rescued behavioral deficits in C. elegans AD-like neuropathy models, suggesting that 14-3-3 proteins are instrumental in aggregate accrual and supporting the advancement of drugs targeting 14-3-3 protein complexes with their partners.


Asunto(s)
Proteínas 14-3-3 , Enfermedad de Alzheimer , Síndrome de Creutzfeldt-Jakob , Enfermedades Neurodegenerativas , Animales , Humanos , Proteínas 14-3-3/metabolismo , Enfermedad de Alzheimer/metabolismo , Caenorhabditis elegans/metabolismo , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/metabolismo
9.
Front Aging Neurosci ; 14: 938117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992603

RESUMEN

Protein structure is determined by the amino acid sequence and a variety of post-translational modifications, and provides the basis for physiological properties. Not all proteins in the proteome attain a stable conformation; roughly one third of human proteins are unstructured or contain intrinsically disordered regions exceeding 40% of their length. Proteins comprising or containing extensive unstructured regions are termed intrinsically disordered proteins (IDPs). IDPs are known to be overrepresented in protein aggregates of diverse neurodegenerative diseases. We evaluated the importance of disordered proteins in the nematode Caenorhabditis elegans, by RNAi-mediated knockdown of IDPs in disease-model strains that mimic aggregation associated with neurodegenerative pathologies. Not all disordered proteins are sequestered into aggregates, and most of the tested aggregate-protein IDPs contribute to important physiological functions such as stress resistance or reproduction. Despite decades of research, we still do not understand what properties of a disordered protein determine its entry into aggregates. We have employed machine-learning models to identify factors that predict whether a disordered protein is found in sarkosyl-insoluble aggregates isolated from neurodegenerative-disease brains (both AD and PD). Machine-learning predictions, coupled with principal component analysis (PCA), enabled us to identify the physiochemical properties that determine whether a disordered protein will be enriched in neuropathic aggregates.

10.
Pharmaceutics ; 14(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35890250

RESUMEN

Glial fibrillary acidic protein (GFAP) is an intermediate filament structural protein involved in cytoskeleton assembly and integrity, expressed in high abundance in activated glial cells. GFAP is neuroprotective, as knockout mice are hypersensitive to traumatic brain injury. GFAP in cerebrospinal fluid is a biomarker of Alzheimer's disease (AD), dementia with Lewy bodies, and frontotemporal dementia (FTD). Here, we present novel evidence that GFAP is markedly overexpressed and differentially phosphorylated in AD hippocampus, especially in AD with the apolipoprotein E [ε4, ε4] genotype, relative to age-matched controls (AMCs). Kinases that phosphorylate GFAP are upregulated in AD relative to AMC. A knockdown of these kinases in SH-SY5Y-APPSw human neuroblastoma cells reduced amyloid accrual and lowered protein aggregation and associated behavioral traits in C. elegans models of polyglutamine aggregation (as observed in Huntington's disease) and of Alzheimer's-like amyloid formation. In silico screening of the ChemBridge structural library identified a small molecule, MSR1, with stable and specific binding to GFAP. Both MSR1 exposure and GF AP-specific RNAi knockdown reduce aggregation with remarkably high concordance of aggregate proteins depleted. These data imply that GFAP and its phosphorylation play key roles in neuropathic aggregate accrual and provide valuable new biomarkers, as well as novel therapeutic targets to alleviate, delay, or prevent AD.

11.
Trends Mol Med ; 28(5): 360-377, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35341686

RESUMEN

Hematopoietic stem cells (HSCs) are polyfunctional, regenerating all blood cells via hematopoiesis throughout life. Clonal hematopoiesis (CH) is said to occur when a substantial proportion of mature blood cells is derived from a single dominant HSC lineage, usually because these HSCs have somatic mutations that confer a fitness and expansion advantage. CH strongly associates with aging and enrichment in some diseases irrespective of age, emerging as an independent causal risk factor for hematologic malignancies, cardiovascular disease, adverse disease outcomes, and all-cause mortality. Defining the molecular mechanisms underlying CH will thus provide a framework to develop interventions for healthy aging and disease treatment. Here, we review the most recent advances in understanding the molecular basis of CH in health and disease.


Asunto(s)
Hematopoyesis Clonal , Neoplasias Hematológicas , Hematopoyesis Clonal/genética , Neoplasias Hematológicas/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas , Humanos , Mutación
12.
Metab Brain Dis ; 37(1): 147-152, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347206

RESUMEN

A protein's structure is determined by its amino acid sequence and post-translational modifications, and provides the basis for its physiological functions. Across all organisms, roughly a third of the proteome comprises proteins that contain highly unstructured or intrinsically disordered regions. Proteins comprising or containing extensive unstructured regions are referred to as intrinsically disordered proteins (IDPs). IDPs are believed to participate in complex physiological processes through refolding of IDP regions, dependent on their binding to a diverse array of potential protein partners. They thus play critical roles in the assembly and function of protein complexes. Recent advances in experimental and computational analyses predicted multiple interacting partners for the disordered regions of proteins, implying critical roles in signal transduction and regulation of biological processes. Numerous disordered proteins are sequestered into aggregates in neurodegenerative diseases such as Alzheimer's disease (AD) where they are enriched even in serum, making them good candidates for serum biomarkers to enable early detection of AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Intrínsecamente Desordenadas , Enfermedad de Alzheimer/diagnóstico , Secuencia de Aminoácidos , Biomarcadores , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteoma/química , Proteoma/metabolismo
13.
Sci Rep ; 11(1): 19732, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611196

RESUMEN

Aggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in a C. elegans nematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.


Asunto(s)
Enfermedad de Huntington/etiología , Enfermedad de Huntington/metabolismo , Agregado de Proteínas/efectos de la radiación , Agregación Patológica de Proteínas/metabolismo , Animales , Caenorhabditis elegans , Modelos Animales de Enfermedad , Humanos , Enfermedad de Huntington/patología , Enfermedad de Huntington/terapia , Rayos Láser , Terapia por Luz de Baja Intensidad , Péptidos/metabolismo , Terapia Fototérmica , Agregación Patológica de Proteínas/terapia , Proteínas Recombinantes de Fusión/metabolismo
14.
Bioorg Med Chem ; 45: 116311, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34304133

RESUMEN

A series of novel 2-hydroxybenzylamine-deoxyvasicinone hybrid analogs (8a-8n) have been synthesized and evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid peptide (Aß1-42) aggregation, for treatment of Alzheimer's disease (AD). These dual acting compounds exhibited good AChE inhibitory activities ranging from 0.34 to 6.35 µM. Analogs8g and 8n were found to be the most potent AChE inhibitors in the series with IC50values of 0.38 µM and 0.34 µM, respectively. All the analogs (8a-8n) exhibited weak BuChE inhibitory activities ranging from 14.60 to 21.65 µM. Analogs8g and 8n exhibited BuChE with IC50values of 15.38 µM and 14.60 µM, respectively, demonstrating that these analogs were greater than 40-fold more selective for inhibition of AChE over BuChE. Additionally, compounds8g and 8n were also found to be the best inhibitors of self-induced Aß1-42 peptide aggregation with IC50values of 3.91 µM and 3.22 µM, respectively; 8g and 8n also inhibited AChE-induced Aß1-42 peptide aggregation by 68.7% and 72.6%, respectively. Kinetic analysis and molecular docking studies indicate that analogs 8g and 8n bind to a new allosteric pocket (site B) on AChE. In addition, the observed inhibition of AChE-induced Aß1-42 peptide aggregation by 8n is likely due to allosteric inhibition of the binding of this peptide at the CAS site on AChE. Overall, these results indicate that 8g and 8n are examples of dual-acting lead compounds for the development of highly effective anti-AD drugs.


Asunto(s)
Alcaloides/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Bencilaminas/farmacología , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa/metabolismo , Alcaloides/química , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Bencilaminas/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Caballos , Humanos , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
15.
Aging Cell ; 20(5): e13326, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33788386

RESUMEN

All neurodegenerative diseases feature aggregates, which usually contain disease-specific diagnostic proteins; non-protein constituents, however, have rarely been explored. Aggregates from SY5Y-APPSw neuroblastoma, a cell model of familial Alzheimer's disease, were crosslinked and sequences of linked peptides identified. We constructed a normalized "contactome" comprising 11 subnetworks, centered on 24 high-connectivity hubs. Remarkably, all 24 are nucleic acid-binding proteins. This led us to isolate and sequence RNA and DNA from Alzheimer's and control aggregates. RNA fragments were mapped to the human genome by RNA-seq and DNA by ChIP-seq. Nearly all aggregate RNA sequences mapped to specific genes, whereas DNA fragments were predominantly intergenic. These nucleic acid mappings are all significantly nonrandom, making an artifactual origin extremely unlikely. RNA (mostly cytoplasmic) exceeded DNA (chiefly nuclear) by twofold to fivefold. RNA fragments recovered from AD tissue were ~1.5-to 2.5-fold more abundant than those recovered from control tissue, similar to the increase in protein. Aggregate abundances of specific RNA sequences were strikingly differential between cultured SY5Y-APPSw glioblastoma cells expressing APOE3 vs. APOE4, consistent with APOE4 competition for E-box/CLEAR motifs. We identified many G-quadruplex and viral sequences within RNA and DNA of aggregates, suggesting that sequestration of viral genomes may have driven the evolution of disordered nucleic acid-binding proteins. After RNA-interference knockdown of the translational-procession factor EEF2 to suppress translation in SY5Y-APPSw cells, the RNA content of aggregates declined by >90%, while reducing protein content by only 30% and altering DNA content by ≤10%. This implies that cotranslational misfolding of nascent proteins may ensnare polysomes into aggregates, accounting for most of their RNA content.


Asunto(s)
ADN/metabolismo , Extensión de la Cadena Peptídica de Translación , Agregado de Proteínas , ARN/metabolismo , Enfermedad de Alzheimer/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Glioma/metabolismo , Hipocampo/metabolismo , Humanos , Pliegue de Proteína , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , RNA-Seq
16.
Sci Rep ; 10(1): 18326, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33110096

RESUMEN

Glycogen synthase kinase-3ß (GSK3ß) controls many physiological pathways, and is implicated in many diseases including Alzheimer's and several cancers. GSK3ß-mediated phosphorylation of target residues in microtubule-associated protein tau (MAPTAU) contributes to MAPTAU hyperphosphorylation and subsequent formation of neurofibrillary tangles. Inhibitors of GSK3ß protect against Alzheimer's disease and are therapeutic for several cancers. A thiadiazolidinone drug, TDZD-8, is a non-ATP-competitive inhibitor targeting GSK3ß with demonstrated efficacy against multiple diseases. However, no experimental data or models define the binding mode of TDZD-8 with GSK3ß, which chiefly reflects our lack of an established inactive conformation for this protein. Here, we used metadynamic simulation to predict the three-dimensional structure of the inactive conformation of GSK3ß. Our model predicts that phosphorylation of GSK3ß Serine9 would hasten the DFG-flip to an inactive state. Molecular docking and simulation predict the TDZD-8 binding conformation of GSK3ß to be inactive, and are consistent with biochemical evidence for the TDZD-8-interacting residues of GSK3ß. We also identified the pharmacophore and assessed binding efficacy of second-generation TDZD analogs (TDZD-10 and Tideglusib) that bind GSK3ß as non-ATP-competitive inhibitors. Based on these results, the predicted inactive conformation of GSK3ß can facilitate the identification of novel GSK3ß inhibitors of high potency and specificity.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/química , Tiadiazoles/metabolismo , Sitios de Unión , Dominio Catalítico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica
17.
Trends Cancer ; 6(10): 858-873, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32487486

RESUMEN

Genomic instability (GIN), an increased tendency to acquire genomic alterations, is a cancer hallmark. However, its frequency, underlying causes, and disease relevance vary across different cancers. Multiple myeloma (MM), a plasma cell malignancy, evolves through premalignant phases characterized by genomic abnormalities. Next-generation sequencing (NGS) methods are deconstructing the genomic landscape of MM across the continuum of its development, inextricably linking malignant transformation and disease progression with increasing acquisition of genomic alterations, and illuminating the mechanisms that generate these alterations. Although GIN drives disease evolution, it also creates vulnerabilities such as dependencies on 'superfluous' repair mechanisms and the induction of tumor-specific antigens that can be targeted. We review the mechanisms of GIN in MM, the associated vulnerabilities, and therapeutic targeting strategies.


Asunto(s)
Inestabilidad Genómica , Mieloma Múltiple/genética , Animales , Humanos , Mieloma Múltiple/terapia
18.
iScience ; 20: 248-264, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31593839

RESUMEN

Diagnosis of neurodegenerative diseases hinges on "seed" proteins detected in disease-specific aggregates. These inclusions contain diverse constituents, adhering through aberrant interactions that our prior data indicate are nonrandom. To define preferential protein-protein contacts mediating aggregate coalescence, we created click-chemistry reagents that cross-link neighboring proteins within human, APPSw-driven, neuroblastoma-cell aggregates. These reagents incorporate a biotinyl group to efficiently recover linked tryptic-peptide pairs. Mass-spectroscopy outputs were screened for all possible peptide pairs in the aggregate proteome. These empirical linkages, ranked by abundance, implicate a protein-adherence network termed the "aggregate contactome." Critical hubs and hub-hub interactions were assessed by RNAi-mediated rescue of chemotaxis in aging nematodes, and aggregation-driving properties were inferred by multivariate regression and neural-network approaches. Aspirin, while disrupting aggregation, greatly simplified the aggregate contactome. This approach, and the dynamic model of aggregate accrual it implies, reveals the architecture of insoluble-aggregate networks and may reveal targets susceptible to interventions to ameliorate protein-aggregation diseases.

19.
Sci Rep ; 9(1): 7368, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31089188

RESUMEN

We collected 60 age-dependent transcriptomes for C. elegans strains including four exceptionally long-lived mutants (mean adult lifespan extended 2.2- to 9.4-fold) and three examples of lifespan-increasing RNAi treatments. Principal Component Analysis (PCA) reveals aging as a transcriptomic drift along a single direction, consistent across the vastly diverse biological conditions and coinciding with the first principal component, a hallmark of the criticality of the underlying gene regulatory network. We therefore expected that the organism's aging state could be characterized by a single number closely related to vitality deficit or biological age. The "aging trajectory", i.e. the dependence of the biological age on chronological age, is then a universal stochastic function modulated by the network stiffness; a macroscopic parameter reflecting the network topology and associated with the rate of aging. To corroborate this view, we used publicly available datasets to define a transcriptomic biomarker of age and observed that the rescaling of age by lifespan simultaneously brings together aging trajectories of transcription and survival curves. In accordance with the theoretical prediction, the limiting mortality value at the plateau agrees closely with the mortality rate doubling exponent estimated at the cross-over age near the average lifespan. Finally, we used the transcriptomic signature of age to identify possible life-extending drug compounds and successfully tested a handful of the top-ranking molecules in C. elegans survival assays and achieved up to a +30% extension of mean lifespan.


Asunto(s)
Caenorhabditis elegans/fisiología , Redes Reguladoras de Genes/genética , Longevidad/genética , Transcriptoma/genética , Animales , Anisomicina/administración & dosificación , Azacitidina/administración & dosificación , Benzazepinas/administración & dosificación , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Camptotecina/administración & dosificación , Conjuntos de Datos como Asunto , Dipirona/administración & dosificación , Relación Dosis-Respuesta a Droga , Redes Reguladoras de Genes/efectos de los fármacos , Indoles/administración & dosificación , Estimación de Kaplan-Meier , Longevidad/efectos de los fármacos , Modelos Animales , RNA-Seq , Factores de Tiempo
20.
Front Mol Neurosci ; 12: 310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920540

RESUMEN

Age-progressive neurodegenerative pathologies, including Alzheimer's disease (AD), are distinguished and diagnosed by disease-specific components of intra- or extra-cellular aggregates. Increasing evidence suggests that neuroinflammation promotes protein aggregation, and is involved in the etiology of neurological diseases. We synthesized and tested analogs of the naturally occurring tubulin-binding compound, combretastatin A-4. One such analog, PNR502, markedly reduced the quantity of Alzheimer-associated amyloid aggregates in the BRI-Aß1-42 mouse model of AD, while blunting the ability of the pro-inflammatory cytokine IL-1ß to raise levels of amyloid plaque and its protein precursors in a neuronal cell-culture model. In transgenic Caenorhabditis elegans (C. elegans) strains that express human Aß1-42 in muscle or neurons, PNR502 rescued Aß-induced disruption of motility (3.8-fold, P < 0.0001) or chemotaxis (1.8-fold, P < 0.05), respectively. Moreover, in C. elegans with neuronal expression of Aß1-42, a single day of PNR502 exposure reverses the chemotaxis deficit by 54% (P < 0.01), actually exceeding the protection from longer exposure. Moreover, continuous PNR502 treatment extends nematode lifespan 23% (P ≤ 0.001). Given that PNR502 can slow, prevent, or reverse Alzheimer-like protein aggregation in human-cell-culture and animal models, and that its principal predicted and observed binding targets are proteins previously implicated in Alzheimer's, we propose that PNR502 has therapeutic potential to inhibit cerebral Aß1-42 aggregation and prevent or reverse neurodegeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...