Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 9: 221, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106299

RESUMEN

Deep brain stimulation targeting the subthalamic nucleus (STN-DBS) is an effective surgical treatment for the motor symptoms of Parkinson's disease (PD), the precise neuronal mechanisms of which both at molecular and network levels remain a topic of debate. Here we employ two transgenic mouse lines, combining translating ribosomal affinity purification (TRAP) with bacterial artificial chromosome expression (Bac), to selectively identify changes in translational gene expression in either Drd1a-expressing striatonigral or Drd2-expressing striatopallidal medium spiny neurons (MSNs) of the striatum following STN-DBS. 6-hydroxydopamine lesioned mice received either 5 days stimulation via a DBS electrode implanted in the ipsilateral STN or 5 days sham treatment (no stimulation). Striatal polyribosomal RNA was selectively purified from either Drd2 or Drd1a MSNs using the TRAP method and gene expression profiling performed. We identified eight significantly altered genes in Drd2 MSNs (Vps33b, Ppp1r3c, Mapk4, Sorcs2, Neto1, Abca1, Penk1, and Gapdh) and two overlapping genes in Drd1a MSNs (Penk1 and Ppp1r3c) implicated in the molecular mechanisms of STN-DBS. A detailed functional analysis, using a further 728 probes implicated in STN-DBS, suggested an increased ability to receive excitation (mediated by increased dendritic spines, increased calcium influx and enhanced excitatory post synaptic potentials) accompanied by processes that would hamper the initiation of action potentials, transport of neurotransmitters from soma to axon terminals and vesicular release in Drd2-expressing MSNs. Finally, changes in expression of several genes involved in apoptosis as well as cholesterol and fatty acid metabolism were also identified. This increased understanding of the molecular mechanisms induced by STN-DBS may reveal novel targets for future non-surgical therapies for PD.

2.
Plant Mol Biol ; 80(3): 299-314, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22864927

RESUMEN

Fructans are soluble carbohydrates with health benefits and possible roles in plant adaptation. Fructan biosynthetic genes were isolated using comparative genomics and physical mapping followed by BAC sequencing in barley. Genes encoding sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT) and sucrose:fructan 6-fructosyltransferase (6-SFT) were clustered together with multiple copies of vacuolar invertase genes and a transposable element on two barley BAC. Intron-exon structures of the genes were similar. Phylogenetic analysis of the fructosyltransferases and invertases in the Poaceae showed that the fructan biosynthetic genes may have evolved from vacuolar invertases. Quantitative real-time PCR was performed using leaf RNA extracted from three wheat cultivars grown under different conditions. The 1-SST, 1-FFT and 6-SFT genes had correlated expression patterns in our wheat experiment and in existing barley transcriptome database. Single nucleotide polymorphism (SNP) markers were developed and successfully mapped to a major QTL region affecting wheat grain fructan accumulation in two independent wheat populations. The alleles controlling high- and low- fructan in parental lines were also found to be associated in fructan production in a diverse set of 128 wheat lines. To the authors' knowledge, this is the first report on the mapping and sequencing of a fructan biosynthetic gene cluster and in particular, the isolation of a novel 1-FFT gene from barley.


Asunto(s)
Fructanos/biosíntesis , Hordeum/enzimología , Familia de Multigenes/genética , Proteínas de Plantas/genética , Triticum/enzimología , Secuencia de Aminoácidos , Mapeo Cromosómico/métodos , ADN de Plantas/química , ADN de Plantas/genética , Fructanos/análisis , Fructanos/genética , Regulación de la Expresión Génica de las Plantas/genética , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hordeum/genética , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Triticum/genética , Vacuolas/enzimología , beta-Fructofuranosidasa/genética
3.
BMC Genomics ; 11: 382, 2010 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-20553621

RESUMEN

BACKGROUND: Physical maps employing libraries of bacterial artificial chromosome (BAC) clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum), Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. RESULTS: We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. CONCLUSIONS: The physical map reported here is the first physical map using fingerprinting of a complete Triticeae genome. This study demonstrates that global fingerprinting of the large plant genomes is a viable strategy for generating physical maps. Physical maps allow the description of the co-linearity between wheat and grass genomes and provide a powerful tool for positional cloning of new genes.


Asunto(s)
Dermatoglifia del ADN , Evolución Molecular , Genoma de Planta/genética , Mapeo Físico de Cromosoma , Poaceae/genética , Cromosomas Artificiales Bacterianos/genética , Cromosomas de las Plantas/genética , Hordeum/genética , Oryza/genética , Poaceae/efectos de la radiación , Recombinación Genética/genética , Eliminación de Secuencia/efectos de la radiación , Sintenía/genética , Triticum/genética , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA