Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Mol Pathol ; 98(3): 574-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25794976

RESUMEN

Pyruvate dehydrogenase kinase 4 (PDK4), a mammalian mitochondrial serine kinase has emerged as an interesting candidate for diabetes therapy. Due to the high prevalence of this disease especially type 2 diabetes (T2D) and the health complications associated with it, there is extensive effort to find the appropriate treatment. Understanding the regulation of PDK4 activity would therefore contribute significantly to the development of therapeutic agents. This research outlines the utilization of bioinformatics tools such as Interweaver, ClustalW and Protein Structure Visualizer, in order to predict proteins that potentially interact with PDK4 and possibly regulate its activity. Interweaver database identified 96 proteins that have possible interaction sites for PDK4. Protein p100/p49, containing a death domain that is known to have a role in suppressing apoptosis, was identified as a potential partner for PDK4. The alignment between p100/p49 primary sequence and that of PDK4 using ClustalW demonstrated sequence similarity between the two proteins. Swiss PDB Viewer then located the positions of the amino acids that are in the hypothetical protein binding motif of p100/p49 within the 3D structure of hPDK4. These amino acids were found to be located in the region of PDK4 which is known to bind protein substrates of PDK4 and may be accessible to other proteins as well. These findings were very interesting as PDK4 has not previously been associated with apoptosis and this could be the link between apoptosis and insulin resistance. Cell biology studies were then performed to verify the relationship between PDK4 and apoptosis. In this regard, HeLa and HepG2 cells were treated with apoptosis-inducing agents such as TNFα, C2-ceramide, and linoleic acid. These cells were then monitored for apoptosis and PDK4 mRNA expression using a DNA laddering assay as well as Real Time PCR. The results showed that these factors induced apoptosis in a concentration dependent manner and suppressed PDK4 mRNA levels. These findings suggested a relationship between PDK4 and apoptosis.


Asunto(s)
Apoptosis , Proteínas Serina-Treonina Quinasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Células HeLa , Células Hep G2 , Humanos , Resistencia a la Insulina , Datos de Secuencia Molecular , Subunidad p52 de NF-kappa B/química , Subunidad p52 de NF-kappa B/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Curr Drug Deliv ; 9(6): 617-27, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22812395

RESUMEN

Many drug delivery systems have indicated improvement in delivery of various drug molecules and among these biodegradable and biocompatible polymers such as poly(D,L-lactide-co-glycolide) (PLGA) have been shown to enhance intracellular uptake of drug candidates when formulated as nanoparticles. PLGA nanoparticles were prepared by means of a double emulsion solvent evaporation technique and evaluated in terms of size, encapsulation efficiency, surface charge, isoniazid release and in vitro transport. The nanoparticles have an average size of 237 nm and were previously shown to be distributed in several tissues after oral administration without triggering an immune response. This study focussed on the in vitro permeation of the PLGA nanoparticles across different membranes and showed that although Rhodamine 6G-labelled nanoparticles are efficiently delivered across the intestinal epithelium, its epithelial permeability changes when a drug such as isoniazid is encapsulated. Future studies should focus on ways to optimise PLGA nanoparticle delivery when a drug such as isoniazid is encapsulated for instance by coating with polymers such as polyethylene glycol.


Asunto(s)
Mucosa Intestinal/metabolismo , Ácido Láctico/metabolismo , Nanopartículas , Ácido Poliglicólico/metabolismo , Transporte Biológico , Células CACO-2 , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Isoniazida/química , Isoniazida/metabolismo , Ácido Láctico/química , Membranas Artificiales , Nanopartículas/química , Permeabilidad , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Rodaminas/química , Rodaminas/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA