Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 20(4): 422-431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37945896

RESUMEN

The integrated stress response (ISR) enables cells to survive a variety of acute stresses, but chronic activation of the ISR underlies age-related diseases. ISR signaling downregulates translation and activates expression of stress-responsive factors that promote return to homeostasis and is initiated by inhibition of the decameric guanine nucleotide exchange factor eIF2B. Conformational and assembly transitions regulate eIF2B activity, but the allosteric mechanisms controlling these dynamic transitions and mediating the therapeutic effects of the small-molecule ISR inhibitor ISRIB are unknown. Using hydrogen-deuterium exchange-mass spectrometry and cryo-electron microscopy, we identified a central α-helix whose orientation allosterically coordinates eIF2B conformation and assembly. Biochemical and cellular signaling assays show that this 'switch-helix' controls eIF2B activity and signaling. In sum, the switch-helix acts as a fulcrum of eIF2B conformational regulation and is a highly conserved actuator of ISR signal transduction. This work uncovers a conserved allosteric mechanism and unlocks new therapeutic possibilities for ISR-linked diseases.


Asunto(s)
Factor 2B Eucariótico de Iniciación , Factores de Intercambio de Guanina Nucleótido , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/metabolismo , Regulación Alostérica , Microscopía por Crioelectrón , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal , Fosforilación
2.
Proc Natl Acad Sci U S A ; 120(43): e2308600120, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37862384

RESUMEN

Carboxysomes are proteinaceous organelles that encapsulate key enzymes of CO2 fixation-Rubisco and carbonic anhydrase-and are the centerpiece of the bacterial CO2 concentrating mechanism (CCM). In the CCM, actively accumulated cytosolic bicarbonate diffuses into the carboxysome and is converted to CO2 by carbonic anhydrase, producing a high CO2 concentration near Rubisco and ensuring efficient carboxylation. Self-assembly of the α-carboxysome is orchestrated by the intrinsically disordered scaffolding protein, CsoS2, which interacts with both Rubisco and carboxysomal shell proteins, but it is unknown how the carbonic anhydrase, CsoSCA, is incorporated into the α-carboxysome. Here, we present the structural basis of carbonic anhydrase encapsulation into α-carboxysomes from Halothiobacillus neapolitanus. We find that CsoSCA interacts directly with Rubisco via an intrinsically disordered N-terminal domain. A 1.98 Å single-particle cryoelectron microscopy structure of Rubisco in complex with this peptide reveals that CsoSCA binding is predominantly mediated by a network of hydrogen bonds. CsoSCA's binding site overlaps with that of CsoS2, but the two proteins utilize substantially different motifs and modes of binding, revealing a plasticity of the Rubisco binding site. Our results advance the understanding of carboxysome biogenesis and highlight the importance of Rubisco, not only as an enzyme but also as a central hub for mediating assembly through protein interactions.


Asunto(s)
Anhidrasas Carbónicas , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Anhidrasas Carbónicas/metabolismo , Dióxido de Carbono/metabolismo , Microscopía por Crioelectrón , Orgánulos/metabolismo , Proteínas Bacterianas/metabolismo
3.
Elife ; 122023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36942851

RESUMEN

To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of ß-coronaviruses: SARS-CoV-2 S2 apex residues 980-1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro. Hinge epitope mutations that ablate antibody binding compromise pseudovirus infectivity, but changes elsewhere that affect spike opening dynamics, including those found in Omicron BA.1, occlude the epitope and may evade pre-existing serum antibodies targeting the S2 core. This work defines a third class of S2 antibody while providing insights into the potency and limitations of S2 core epitope targeting.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2 , Anticuerpos , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Mamíferos
4.
Protein Sci ; 31(10): e4411, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173161

RESUMEN

Many tyrosine kinases cannot be expressed readily in Escherichia coli, limiting facile production of these proteins for biochemical experiments. We used ancestral sequence reconstruction to generate a spleen tyrosine kinase (Syk) variant that can be expressed in bacteria and purified in soluble form, unlike the human members of this family (Syk and zeta-chain-associated protein kinase of 70 kDa [ZAP-70]). The catalytic activity, substrate specificity, and regulation by phosphorylation of this Syk variant are similar to the corresponding properties of human Syk and ZAP-70. Taking advantage of the ability to express this novel Syk-family kinase in bacteria, we developed a two-hybrid assay that couples the growth of E. coli in the presence of an antibiotic to successful phosphorylation of a bait peptide by the kinase. Using this assay, we screened a site-saturation mutagenesis library of the kinase domain of this reconstructed Syk-family kinase. Sites of loss-of-function mutations identified in the screen correlate well with residues established previously as critical to function and/or structure in protein kinases. We also identified activating mutations in the regulatory hydrophobic spine and activation loop, which are within key motifs involved in kinase regulation. Strikingly, one mutation in an ancestral Syk-family variant increases the soluble expression of the protein by 75-fold. Thus, through ancestral sequence reconstruction followed by deep mutational scanning, we have generated Syk-family kinase variants that can be expressed in bacteria with very high yield.


Asunto(s)
Escherichia coli , Péptidos y Proteínas de Señalización Intracelular , Antibacterianos , Precursores Enzimáticos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutagénesis , Péptidos/química , Fosforilación , Quinasa Syk/genética , Quinasa Syk/metabolismo , Tirosina/genética
5.
Nat Struct Mol Biol ; 29(3): 229-238, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236990

RESUMEN

Current COVID-19 vaccines and many clinical diagnostics are based on the structure and function of the SARS-CoV-2 spike ectodomain. Using hydrogen-deuterium exchange monitored by mass spectrometry, we have uncovered that, in addition to the prefusion structure determined by cryo-electron microscopy, this protein adopts an alternative conformation that interconverts slowly with the canonical prefusion structure. This new conformation-an open trimer-contains easily accessible receptor-binding domains. It exposes the conserved trimer interface buried in the prefusion conformation, thus exposing potential epitopes for pan-coronavirus antibody and ligand recognition. The population of this state and kinetics of interconversion are modulated by temperature, receptor binding, antibody binding, and sequence variants observed in the natural population. Knowledge of the structure and populations of this conformation will help improve existing diagnostics, therapeutics, and vaccines.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes , Vacunas contra la COVID-19 , Microscopía por Crioelectrón , Epítopos , Humanos , Conformación Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
6.
Protein Sci ; 28(7): 1340-1349, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31074917

RESUMEN

SurA, Skp, FkpA, and DegP constitute a chaperone network that ensures biogenesis of outer membrane proteins (OMPs) in Gram-negative bacteria. Both Skp and FkpA are holdases that prevent the self-aggregation of unfolded OMPs, whereas SurA accelerates folding and DegP is a protease. None of these chaperones is essential, and we address here how functional plasticity is manifested in nine known null strains. Using a comprehensive computational model of this network termed OMPBioM, our results suggest that a threshold level of steady state holdase occupancy by chaperones is required, but the cell is agnostic to the specific holdase molecule fulfilling this function. In addition to its foldase activity, SurA moonlights as a holdase when there is no expression of Skp and FkpA. We further interrogate the importance of chaperone-client complex lifetime by conducting simulations using lifetime values for Skp complexes that range in length by six orders of magnitude. This analysis suggests that transient occupancy of durations much shorter than the Escherichia coli doubling time is required. We suggest that fleeting chaperone occupancy facilitates rapid sampling of the periplasmic conditions, which ensures that the cell can be adept at responding to environmental changes. Finally, we calculated the network effects of adding multivalency by computing populations that include two Skp trimers per unfolded OMP. We observe only modest perturbations to the system. Overall, this quantitative framework of chaperone-protein interactions in the periplasm demonstrates robust plasticity due to its dynamic binding and unbinding behavior.


Asunto(s)
Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Mapeo de Interacción de Proteínas , Sitios de Unión , Plasticidad de la Célula , Modelos Moleculares , Chaperonas Moleculares/genética , Periplasma/química , Periplasma/genética
7.
Nat Commun ; 10(1): 1514, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944319

RESUMEN

Skeletal muscle voltage-gated Na+ channel (NaV1.4) activity is subject to calmodulin (CaM) mediated Ca2+-dependent inactivation; no such inactivation is observed in the cardiac Na+ channel (NaV1.5). Taken together, the crystal structures of the NaV1.4 C-terminal domain relevant complexes and thermodynamic binding data presented here provide a rationale for this isoform difference. A Ca2+-dependent CaM N-lobe binding site previously identified in NaV1.5 is not present in NaV1.4 allowing the N-lobe to signal other regions of the NaV1.4 channel. Consistent with this mechanism, removing this binding site in NaV1.5 unveils robust Ca2+-dependent inactivation in the previously insensitive isoform. These findings suggest that Ca2+-dependent inactivation is effected by CaM's N-lobe binding outside the NaV C-terminal while CaM's C-lobe remains bound to the NaV C-terminal. As the N-lobe binding motif of NaV1.5 is a mutational hotspot for inherited arrhythmias, the contributions of mutation-induced changes in CDI to arrhythmia generation is an intriguing possibility.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Sitios de Unión , Calcio/química , Calmodulina/química , Calmodulina/genética , Humanos , Modelos Moleculares , Músculo Esquelético/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas
8.
Am J Obstet Gynecol ; 212(3): 370.e1-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25725660

RESUMEN

OBJECTIVE: We previously demonstrated that prenatal nicotine exposure decreases neonatal pulmonary function in nonhuman primates, and maternal vitamin C supplementation attenuates these deleterious effects. However, the effect of nicotine on placental perfusion and development is not fully understood. This study utilizes noninvasive imaging techniques and histological analysis in a nonhuman primate model to test the hypothesis that prenatal nicotine exposure adversely effects placental hemodynamics and development but is ameliorated by vitamin C. STUDY DESIGN: Time-mated macaques (n = 27) were divided into 4 treatment groups: control (n = 5), nicotine only (n = 4), vitamin C only (n = 9), and nicotine plus vitamin C (n = 9). Nicotine animals received 2 mg/kg per day of nicotine bitartrate (approximately 0.7 mg/kg per day free nicotine levels in pregnant human smokers) from days 26 to 160 (term, 168 days). Vitamin C groups received ascorbic acid at 50, 100, or 250 mg/kg per day with or without nicotine. All underwent placental dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) at 135-140 days and Doppler ultrasound at 155 days to measure uterine artery and umbilical vein velocimetry and diameter to calculate uterine artery volume blood flow and placental volume blood flow. Animals were delivered by cesarean delivery at 160 days. A novel DCE-MRI protocol was utilized to calculate placental perfusion from maternal spiral arteries. Placental tissue was processed for histopathology. RESULTS: Placental volume blood flow was significantly reduced in nicotine-only animals compared with controls and nicotine plus vitamin C groups (P = .03). Maternal placental blood flow was not different between experimental groups by DCE-MRI, ranging from 0.75 to 1.94 mL/mL per minute (P = .93). Placental histology showed increased numbers of villous cytotrophoblast cell islands (P < .05) and increased syncytiotrophoblast sprouting (P < .001) in nicotine-only animals, which was mitigated by vitamin C. CONCLUSION: Prenatal nicotine exposure significantly decreased fetal blood supply via reduced placental volume blood flow, which corresponded with placental histological findings previously associated with cigarette smoking. Vitamin C supplementation mitigated the harmful effects of prenatal nicotine exposure on placental hemodynamics and development, suggesting that its use may limit some of the adverse effects associated with smoking during pregnancy.


Asunto(s)
Ácido Ascórbico/farmacología , Estimulantes Ganglionares/efectos adversos , Exposición Materna/efectos adversos , Nicotina/efectos adversos , Placenta/efectos de los fármacos , Circulación Placentaria/efectos de los fármacos , Vitaminas/farmacología , Animales , Ácido Ascórbico/administración & dosificación , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Estimulantes Ganglionares/administración & dosificación , Macaca , Imagen por Resonancia Magnética , Nicotina/administración & dosificación , Placenta/irrigación sanguínea , Placenta/diagnóstico por imagen , Placenta/patología , Embarazo , Distribución Aleatoria , Ultrasonografía Doppler en Color , Vitaminas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...