Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35406921

RESUMEN

This study aimed to identify drought-tolerant genotypes and to evaluate and compare the response of genotypes under normal conditions and humidity stress. The experiment was conducted in a Randomized Complete Block Design (RCBD) on 12 commercial single cross hybrids of maize (Zea mays L.) with three replications in two separate experiments under normal and stress conditions. GT biplot was used to compare genotypes under normal conditions and humidity stress. Based on the polygon diagrams' graphical analysis, KSC206, KSC704, KSC705 and KSC706 genotypes were identified as desirable hybrids. The ranking diagram of genotypes based on ideal genotype also showed that the KSC704 genotype had high desirability in all evaluated traits in normal and stress conditions. TOL, MP, HARM, GMP, SSI and STI indices were used to identify drought-tolerant genotypes, and the genotypes were ranked based on this index. Based on this, KSC260, SC302 and KSC400 hybrids were selected as resistant hybrids. Based on the correlation analysis between drought-tolerance indices, a positive correlation was observed between MP, GMP, HARM and STI indices. Based on the analysis of the PCA on the indices, the first and second principal components were given the titles of grain yield tolerance component under humidity stress conditions and grain yield stability component under normal humidity conditions, respectively. KSC704 was superior to other hybrids in terms of grain yield under normal conditions and stress, and the KSC260 hybrid was identified as a tolerant hybrid in terms of all studied traits under drought stress.

2.
Scientifica (Cairo) ; 2021: 5576691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833893

RESUMEN

The present study investigated the stability and adaptability of maize (Zea mays L.) hybrids. In this study, 12 maize hybrids were planted and examined considering the grain yield. The experiment was arranged in a randomized complete block design (RCBD) with three replications in four research stations in Iran during two crop years. The combined analysis of variance showed that genotype-environment interactions were significant at one percent probability level. The grain yield can stabilize, and hybrids with specific adaptability are recommended to each environment. Hybrids with specific adaptability can be recommended to all types of the environment. Means comparison yield of the genotypes identified DC370 as a high-yield genotype. Regarding AMMI analysis, genotype × environment interactions (GEIs) and two first components were found significant. The SC647 genotype was identified as the most stable genotype. Regarding the stability parameters, SC647 and KSC705 genotypes were selected as the most stable genotypes. From AMMI1 and AMMI2 graphs, the SC647 genotype was identified as the most stable genotype compared with other hybrids.

3.
Food Sci Nutr ; 8(10): 5340-5351, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33133537

RESUMEN

In order to investigate the interaction of genotype × trait and relationships among agronomic traits on 12 maize hybrids, an experiment was conducted in a randomized complete block design (RCBD) with three replicates in four regions of Karaj, Birjand, Shiraz, and Arak. Results of analysis of variance indicated that most of the genotypes were significantly different in terms of agronomic traits. Mean comparison by Duncan's method showed that KSC705 genotype was more favorable than other genotypes in all studied regions. SC604 genotype in Birjand and Karaj regions and KSC707 genotype in Shiraz region have higher rank than other genotypes. Correlation analysis was used to investigate the relationships between traits. In most of the studied regions, traits of number of grains in row and number of rows per ear were positively and significantly correlated with grain width and grain weight with grain yield. Graphical analysis was used to further investigate. Genotypes-trait interaction graph explained 59.27%, 61.22%, 59.17%, and 61.95% of total variance in Karaj, Birjand, Shiraz, and Arak, respectively. Based on the multivariate graph, KSC705, KSC706, and SC647 genotypes were identified as superior genotypes in all studied regions and KSC400 genotype did not show much response to change in traits. Correlation between grain width and number of rows in ear, plant height and grain length, one thousand grain weight and grain thickness, and ear diameter with number of grains in row was positive and significant. The results of classification graph of genotypes also divided the cultivars in to three groups as follows: KSC703, KSC400, and KSC706 genotypes in the first group; DC370, SC604, and SC301 in the second group; and KSC260, KSC704, KSC707, and SC301 in the third group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA