Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Sci Total Environ ; 904: 166937, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696399

RESUMEN

In the southern San Joaquin Valley (SJV) of California, an agriculturally productive region that relies on groundwater for irrigation and domestic water supply, the infiltration of produced water from oil reservoirs is known to impact groundwater due to percolation from unlined disposal ponds. However, previously documented impacts almost exclusively focus on salinity, while contaminant loadings commonly associated with produced water (e.g., radionuclides) are poorly constrained. For example, the infiltration of bicarbonate-rich produced waters can react with sediment-bound uranium (U), leading to U mobilization and subsequent transport to nearby groundwater. Specifically, produced water infiltration poses a particular concern for SJV groundwater, as valley-fill sediments are well documented to be enriched in geogenic, reduced U. Here, we analyzed monitoring well data from two SJV produced water pond facilities to characterize U mobilization and subsequent groundwater contamination. Groundwater wells installed within 2 km of the facilities contained produced water and elevated levels of uranium. There are >400 produced water disposal pond facilities in the southern SJV. If our observations occur at even a fraction of these facilities, there is the potential for widespread U contamination in the groundwaters of one of the most productive agricultural regions in the world.

3.
Curr Environ Health Rep ; 10(3): 337-352, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37491689

RESUMEN

PURPOSE OF REVIEW: Organosulfur compounds are intentionally added to natural gas as malodorants with the intent of short-term nasal inhalation to aid in leak detection. Regulatory exposure limits have not been established for all commonly used natural gas odorants, and recent community-level exposure events and growing evidence of indoor natural gas leakage have raised concerns associated with natural gas odorant exposures. We conducted a scoping review of peer-reviewed scientific publications on human exposures and animal toxicological studies of natural gas odorants to assess toxicological profiles, exposure potential, health effects and regulatory guidelines associated with commonly used natural gas odorants. RECENT FINDINGS: We identified only 22 studies which met inclusion criteria for full review. Overall, there is limited evidence of both transient nonspecific health symptoms and clinically diagnosed causative neurotoxic effects associated with prolonged odorant exposures. Across seven community-level exposure events and two occupational case reports, consistent symptom patterns included: headache, ocular irritation, nose and throat irritation, respiratory complaints such as shortness of breath and asthma attacks, and skin irritation and rash. Of these, respiratory inflammation and asthma exacerbations are the most debilitating, whereas the high prevalence of ocular and dermatologic symptoms suggest a non-inhalation route of exposure. The limited evidence available raises the possibility that organosulfur odorants may pose health risks at exposures much lower than presently understood, though additional dose-response studies are needed to disentangle specific toxicologic effects from nonspecific responses to noxious organosulfur odors. Numerous recommendations are provided including more transparent and prescriptive natural gas odorant use practices.


Asunto(s)
Asma , Odorantes , Animales , Humanos , Gas Natural
4.
Environ Sci Technol ; 57(26): 9653-9663, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37319002

RESUMEN

Exposure pathways to the carcinogen benzene are well-established from tobacco smoke, oil and gas development, refining, gasoline pumping, and gasoline and diesel combustion. Combustion has also been linked to the formation of nitrogen dioxide, carbon monoxide, and formaldehyde indoors from gas stoves. To our knowledge, however, no research has quantified the formation of benzene indoors from gas combustion by stoves. Across 87 homes in California and Colorado, natural gas and propane combustion emitted detectable and repeatable levels of benzene that in some homes raised indoor benzene concentrations above well-established health benchmarks. Mean benzene emissions from gas and propane burners on high and ovens set to 350 °F ranged from 2.8 to 6.5 µg min-1, 10 to 25 times higher than emissions from electric coil and radiant alternatives; neither induction stoves nor the food being cooked emitted detectable benzene. Benzene produced by gas and propane stoves also migrated throughout homes, in some cases elevating bedroom benzene concentrations above chronic health benchmarks for hours after the stove was turned off. Combustion of gas and propane from stoves may be a substantial benzene exposure pathway and can reduce indoor air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire Interior/análisis , Benceno/análisis , Propano , Gasolina , Productos Domésticos , Culinaria , Contaminantes Atmosféricos/análisis
5.
ACS Omega ; 8(22): 19443-19454, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305312

RESUMEN

The U.S. Environmental Protection Agency estimates that there are over 3.2 million abandoned wells in the United States. Studies conducted on gas emissions from abandoned wells have been limited to methane, a powerful greenhouse gas, due to concerns regarding climate change. However, volatile organic compounds (VOCs), including benzene, a known human carcinogen, are known to be associated with upstream oil and gas development and hence could also be released when methane is emitted to the atmosphere. In this investigation, we analyze gas from 48 abandoned wells in western Pennsylvania for fixed gases, light hydrocarbons, and VOCs and estimate associated emission rates. We demonstrate that (1) gas from abandoned wells contains VOCs, including benzene; (2) VOCs are emitted from abandoned wells, the magnitude of which depends on the flow rate and concentration of VOCs in the gas stream; and (3) nearly one-quarter of abandoned wells are located within 100 m of buildings, including residences, in Pennsylvania. Together, these observations indicate that further investigation is necessary to determine whether emissions from abandoned wells pose an inhalation risk to people living, working, or congregating near abandoned wells.

6.
Environ Sci Technol ; 57(19): 7559-7567, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37146013

RESUMEN

Oil and gas development generates large amounts of wastewater (i.e., produced water), which in California has been partially disposed of in unlined percolation/evaporation ponds since the mid-20th century. Although produced water is known to contain multiple environmental contaminants (e.g., radium and trace metals), prior to 2015, detailed chemical characterizations of pondwaters were the exception rather than the norm. Using a state-run database, we synthesized samples (n = 1688) collected from produced water ponds within the southern San Joaquin Valley of California, one of the most productive agricultural regions in the world, to examine regional trends in pondwater arsenic and selenium concentrations. We filled crucial knowledge gaps resulting from historical pondwater monitoring by constructing random forest regression models using commonly measured analytes (boron, chloride, and total dissolved solids) and geospatial data (e.g., soil physiochemical data) to predict arsenic and selenium concentrations in historical samples. Our analysis suggests that both arsenic and selenium levels are elevated in pondwaters and thus this disposal practice may have contributed substantial amounts of arsenic and selenium to aquifers having beneficial uses. We further use our models to identify areas where additional monitoring infrastructure would better constrain the extent of legacy contamination and potential threats to groundwater quality.


Asunto(s)
Arsénico , Agua Subterránea , Selenio , Contaminantes Químicos del Agua , Selenio/análisis , Contaminantes Químicos del Agua/análisis , Agua , Agua Subterránea/análisis , Monitoreo del Ambiente
7.
Geohealth ; 7(3): e2022GH000690, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968155

RESUMEN

People living near oil and gas development are exposed to multiple environmental stressors that pose health risks. Some studies suggest these risks are higher for racially and socioeconomically marginalized people, which may be partly attributable to disparities in exposures. We examined whether racially and socioeconomically marginalized people in California are disproportionately exposed to oil and gas wells and associated hazards. We longitudinally assessed exposure to wells during three time periods (2005-2009, 2010-2014, and 2015-2019) using sociodemographic data at the census block group-level. For each block group and time period, we assessed exposure to new, active, retired, and plugged wells, and cumulative production volume. We calculated risk ratios to determine whether marginalized people disproportionately resided near wells (within 1 km). Averaged across the three time periods, we estimated that 1.1 million Californians (3.0%) lived within 1 km of active wells. Nearly 9 million Californians (22.9%) lived within 1 km of plugged wells. The proportion of Black residents near active wells was 42%-49% higher than the proportion of Black residents across California, and the proportion of Hispanic residents near active wells was 4%-13% higher than their statewide proportion. Disparities were greatest in areas with the highest oil and gas production, where the proportion of Black residents was 105%-139% higher than statewide. Socioeconomically marginalized residents also had disproportionately high exposure to wells. Though oil and gas production has declined in California, marginalized communities persistently had disproportionately high exposure to wells, potentially contributing to health disparities.

8.
Environ Sci Pollut Res Int ; 30(7): 18631-18642, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36215008

RESUMEN

Accidental releases (i.e., spills) of produced water can occur at any point during oil and gas development operations, potentially resulting in chronic and/or catastrophic loadings of produced water to nearby ecosystems and exposures of human populations to toxic constituents including trace metals (e.g., arsenic), organic compounds (e.g., benzene), and/or radionuclides (e.g., radium). Despite California being one of the largest oil and gas producing states in the USA, no comprehensive reviews of produced water spills in the peer-reviewed literature have been published. To address this knowledge gap, produced water spill incident data contained within the California HazMat database were synthesized to elucidate trends in produced water spills in California. During the period of 2006-2020, a total of 1029 incidents involving produced water spills were reported. Despite the potential threat to environmental and human receptors, there are significant knowledge gaps concerning these incidents. Specifically, only ~ 6% of spill incidents contained geographic coordinates, greatly hindering assessments of the impacts of these events to public health and the environment. Moreover, updated spill volumes are not rapidly retrievable from the HazMat database, and during the years 2018-2020 volumes of produced water spilled were underreported in initial reports anywhere from 35-2750%. Further, it is unclear if groundwater monitoring is performed following spill events. This study highlights significant shortcomings in produced water spill reporting in California and recommends improvements to aid future investigations that assess the environmental and public health impacts of spill incidents.


Asunto(s)
Agua Subterránea , Contaminación por Petróleo , Humanos , Ecosistema , Agua , Accidentes , Benceno , Contaminación por Petróleo/análisis
9.
Environ Sci Technol ; 56(22): 15828-15838, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36263944

RESUMEN

The presence of hazardous air pollutants (HAPs) entrained in end-use natural gas (NG) is an understudied source of human health risks. We performed trace gas analyses on 185 unburned NG samples collected from 159 unique residential NG stoves across seven geographic regions in California. Our analyses commonly detected 12 HAPs with significant variability across region and gas utility. Mean regional benzene, toluene, ethylbenzene, and total xylenes (BTEX) concentrations in end-use NG ranged from 1.6-25 ppmv─benzene alone was detected in 99% of samples, and mean concentrations ranged from 0.7-12 ppmv (max: 66 ppmv). By applying previously reported NG and methane emission rates throughout California's transmission, storage, and distribution systems, we estimated statewide benzene emissions of 4,200 (95% CI: 1,800-9,700) kg yr-1 that are currently not included in any statewide inventories─equal to the annual benzene emissions from nearly 60,000 light-duty gasoline vehicles. Additionally, we found that NG leakage from stoves and ovens while not in use can result in indoor benzene concentrations that can exceed the California Office of Environmental Health Hazard Assessment 8-h Reference Exposure Level of 0.94 ppbv─benzene concentrations comparable to environmental tobacco smoke. This study supports the need to further improve our understanding of leaked downstream NG as a source of health risk.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Gas Natural/análisis , Benceno , Monitoreo del Ambiente , Contaminación del Aire/análisis , Derivados del Benceno/análisis , Xilenos , Tolueno
11.
Environ Sci Technol ; 55(21): 14782-14794, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34651501

RESUMEN

The San Joaquin Valley (SJV) in California is one of the most agriculturally productive regions in the world relying in part on groundwater for irrigation and for domestic or municipal water supply for nearly 4 million residents. One area of growing concern in the SJV is potential impact to groundwater resources from ongoing and historical disposal of oilfield-produced water into unlined produced water ponds (PWPs). In this investigation, we utilized available information on composition of produced water disposed into unlined PWPs and levels of total dissolved solids in underlying groundwater to demonstrate that this disposal practice, both past and present, poses risks to groundwater resources, especially in the Tulare Basin in the southern SJV. Groundwater monitoring at unlined PWP facilities is relatively sparse, but where monitoring has occurred, impact to aquifers used for public and agricultural water supply has been observed and has proven to be too expensive to actively remediate. Results of this investigation should inform policy discussions in California and other locations where disposal of produced water into unlined impoundments occurs, especially at locations that overlie groundwater resources.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , California , Monitoreo del Ambiente , Estanques , Agua , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
12.
Sci Total Environ ; 674: 623-636, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31029931

RESUMEN

The significant development of oil and gas from the Marcellus Shale and other geological formations in Pennsylvania over the last decade has generated large volumes of liquid and solid waste. In this paper we use data reported to the Pennsylvania Department of Environmental Protection (PADEP) to examine temporal and spatial trends in generation and management of liquid and solid waste from both conventional and unconventional oil and gas activities in Pennsylvania between 1991 and 2017. While previous assessments have examined this waste inventory in part, no complete assessment of waste quantity, waste types, waste handling practices, and spatial waste tracking has been undertaken using all currently available years of Pennsylvania oil and gas waste data. In 2017 more than half of oil and gas wastewater by volume was reused at well pads to facilitate more hydrocarbon production while the majority of solid waste by volume was disposed of at in-state landfills. The spatial resolution of wastewater generation and handling from unconventional operations has improved substantially with recent regulations and reporting requirements; however, conventional oil and gas development was not held to more stringent reporting requirements and thus spatially-explicit data on wastewater generation and handling from conventional oil and gas development is still lacking. In addition, a third of the liquid waste across all years in the inventory lack a reported final destination. Spatially explicit cradle-to-grave reporting of waste generation and waste handling from both conventional and unconventional oil and gas development is critical to assess potential environmental and human health hazards and risks associated with oil and gas development.

13.
Annu Rev Public Health ; 40: 283-304, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30935307

RESUMEN

Increased energy demands and innovations in upstream oil and natural gas (ONG) extraction technologies have enabled the United States to become one of the world's leading producers of petroleum and natural gas hydrocarbons. The US Environmental Protection Agency (EPA) lists 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Several of these HAPs have been measured at elevated concentrations around ONG sites, but most have not been studied in the context of upstream development. In this review, we analyzed recent global peer-reviewed articles that investigated HAPs near ONG operations to ( a) identify HAPs associated with upstream ONG development, ( b) identify their specific sources in upstream processes, and ( c) examine the potential for adverse health outcomes from HAPs emitted during these phases of hydrocarbon development.


Asunto(s)
Contaminantes Atmosféricos/análisis , Industria del Petróleo y Gas/estadística & datos numéricos , Monitoreo del Ambiente , Humanos , Gas Natural , Estados Unidos , United States Environmental Protection Agency
14.
Environ Health Perspect ; 125(8): 086004, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28858829

RESUMEN

BACKGROUND: Higher risk of exposure to environmental health hazards near oil and gas wells has spurred interest in quantifying populations that live in proximity to oil and gas development. The available studies on this topic lack consistent methodology and ignore aspects of oil and gas development of value to public health-relevant assessment and decision-making. OBJECTIVES: We aim to present a methodological framework for oil and gas development proximity studies grounded in an understanding of hydrocarbon geology and development techniques. METHODS: We geospatially overlay locations of active oil and gas wells in the conterminous United States and Census data to estimate the population living in proximity to hydrocarbon development at the national and state levels. We compare our methods and findings with existing proximity studies. RESULTS: Nationally, we estimate that 17.6 million people live within 1,600m (∼1 mi) of at least one active oil and/or gas well. Three of the eight studies overestimate populations at risk from actively producing oil and gas wells by including wells without evidence of production or drilling completion and/or using inappropriate population allocation methods. The remaining five studies, by omitting conventional wells in regions dominated by historical conventional development, significantly underestimate populations at risk. CONCLUSIONS: The well inventory guidelines we present provide an improved methodology for hydrocarbon proximity studies by acknowledging the importance of both conventional and unconventional well counts as well as the relative exposure risks associated with different primary production categories (e.g., oil, wet gas, dry gas) and developmental stages of wells. https://doi.org/10.1289/EHP1535.


Asunto(s)
Salud Ambiental , Hidrocarburos , Yacimiento de Petróleo y Gas , Geografía , Humanos , Riesgo , Análisis Espacial , Estados Unidos
15.
PLoS One ; 12(4): e0175344, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28422971

RESUMEN

The potential hazards and risks associated with well-stimulation in unconventional oil and gas development (hydraulic fracturing, acid fracturing, and matrix acidizing) have been investigated and evaluated and federal and state regulations requiring chemical disclosure for well-stimulation have been implemented as part of an overall risk management strategy for unconventional oil and gas development. Similar evaluations for chemicals used in other routine oil and gas development activities, such as maintenance acidizing, gravel packing, and well drilling, have not been previously conducted, in part due to a lack of reliable information concerning on-field chemical-use. In this study, we compare chemical-use between routine activities and the more closely regulated well-stimulation activities using data collected by the South Coast Air Quality Monitoring District (SCAQMD), which mandates the reporting of both unconventional and routine on-field chemical-use for parts of Southern California. Analysis of this data shows that there is significant overlap in chemical-use between so-called unconventional activities and routine activities conducted for well maintenance, well-completion, or rework. A comparison within the SCAQMD shows a significant overlap between both types and amounts of chemicals used for well-stimulation treatments included under State mandatory-disclosure regulations and routine treatments that are not included under State regulations. A comparison between SCAQMD chemical-use for routine treatments and state-wide chemical-use for hydraulic fracturing also showed close similarity in chemical-use between activities covered under chemical disclosure requirements (e.g. hydraulic fracturing) and many other oil and gas field activities. The results of this study indicate regulations and risk assessments focused exclusively on chemicals used in well-stimulation activities may underestimate potential hazard or risk from overall oil field chemical-use.


Asunto(s)
Monitoreo del Ambiente , Fracking Hidráulico/legislación & jurisprudencia , Yacimiento de Petróleo y Gas/química , California , Regulación Gubernamental , Humanos , Gas Natural/provisión & distribución , Medición de Riesgo
16.
Sci Total Environ ; 580: 448-456, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27939937

RESUMEN

Modern oil and gas development frequently occurs in close proximity to human populations and increased levels of ambient noise have been documented throughout some phases of development. Numerous studies have evaluated air and water quality degradation and human exposure pathways, but few have evaluated potential health risks and impacts from environmental noise exposure. We reviewed the scientific literature on environmental noise exposure to determine the potential concerns, if any, that noise from oil and gas development activities present to public health. Data on noise levels associated with oil and gas development are limited, but measurements can be evaluated amidst the large body of epidemiology assessing the non-auditory effects of environmental noise exposure and established public health guidelines for community noise. There are a large number of noise dependent and subjective factors that make the determination of a dose response relationship between noise and health outcomes difficult. However, the literature indicates that oil and gas activities produce noise at levels that may increase the risk of adverse health outcomes, including annoyance, sleep disturbance, and cardiovascular disease. More studies that investigate the relationships between noise exposure and human health risks from unconventional oil and gas development are warranted. Finally, policies and mitigation techniques that limit human exposure to noise from oil and gas operations should be considered to reduce health risks.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Ruido , Industria del Petróleo y Gas , Salud Pública , Humanos
17.
Nature ; 540(7633): 341, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27974771
18.
PLoS One ; 11(4): e0154164, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27096432

RESUMEN

The body of science evaluating the potential impacts of unconventional natural gas development (UNGD) has grown significantly in recent years, although many data gaps remain. Still, a broad empirical understanding of the impacts is beginning to emerge amidst a swell of research. The present categorical assessment provides an overview of the peer-reviewed scientific literature from 2009-2015 as it relates to the potential impacts of UNGD on public health, water quality, and air quality. We have categorized all available original research during this time period in an attempt to understand the weight and direction of the scientific literature. Our results indicate that at least 685 papers have been published in peer-reviewed scientific journals that are relevant to assessing the impacts of UNGD. 84% of public health studies contain findings that indicate public health hazards, elevated risks, or adverse health outcomes; 69% of water quality studies contain findings that indicate potential, positive association, or actual incidence of water contamination; and 87% of air quality studies contain findings that indicate elevated air pollutant emissions and/or atmospheric concentrations. This paper demonstrates that the weight of the findings in the scientific literature indicates hazards and elevated risks to human health as well as possible adverse health outcomes associated with UNGD. There are limitations to this type of assessment and it is only intended to provide a snapshot of the scientific knowledge based on the available literature. However, this work can be used to identify themes that lie in or across studies, to prioritize future research, and to provide an empirical foundation for policy decisions.


Asunto(s)
Contaminación del Aire/análisis , Ambiente , Exposición a Riesgos Ambientales/análisis , Gas Natural/efectos adversos , Salud Pública , Calidad del Agua , Humanos , Desarrollo Industrial , Yacimiento de Petróleo y Gas/química , Contaminación del Agua/análisis
19.
Sci Total Environ ; 512-513: 36-42, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25613768

RESUMEN

The United States shale gas boom has precipitated global interest in the development of unconventional oil and gas resources. Recently, government ministers in the United Kingdom started granting licenses that will enable companies to begin initial exploration for shale gas. Meanwhile, concern is increasing among the scientific community about the potential impacts of shale gas and other types of unconventional natural gas development (UGD) on human health and the environment. Although significant data gaps remain, there has been a surge in the number of articles appearing in the scientific literature, nearly three-quarters of which has been published since the beginning of 2013. Important lessons can be drawn from the UGD experience in the United States. Here we explore these considerations and argue that shale gas development policies in the UK and elsewhere should be informed by empirical evidence generated on environmental, public health, and social risks. Additionally, policy decisions should take into account the measured effectiveness of harm reduction strategies as opposed to hypothetical scenarios and purported best practices that lack empirical support.


Asunto(s)
Monitoreo del Ambiente , Industria Procesadora y de Extracción , Gas Natural , Salud Pública , Reino Unido
20.
Proc Natl Acad Sci U S A ; 111(30): 10955-60, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-24982144

RESUMEN

Casing and cement impairment in oil and gas wells can lead to methane migration into the atmosphere and/or into underground sources of drinking water. An analysis of 75,505 compliance reports for 41,381 conventional and unconventional oil and gas wells in Pennsylvania drilled from January 1, 2000-December 31, 2012, was performed with the objective of determining complete and accurate statistics of casing and cement impairment. Statewide data show a sixfold higher incidence of cement and/or casing issues for shale gas wells relative to conventional wells. The Cox proportional hazards model was used to estimate risk of impairment based on existing data. The model identified both temporal and geographic differences in risk. For post-2009 drilled wells, risk of a cement/casing impairment is 1.57-fold [95% confidence interval (CI) (1.45, 1.67); P < 0.0001] higher in an unconventional gas well relative to a conventional well drilled within the same time period. Temporal differences between well types were also observed and may reflect more thorough inspections and greater emphasis on finding well leaks, more detailed note taking in the available inspection reports, or real changes in rates of structural integrity loss due to rushed development or other unknown factors. Unconventional gas wells in northeastern (NE) Pennsylvania are at a 2.7-fold higher risk relative to the conventional wells in the same area. The predicted cumulative risk for all wells (unconventional and conventional) in the NE region is 8.5-fold [95% CI (7.16, 10.18); P < 0.0001] greater than that of wells drilled in the rest of the state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...