Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Plast Surg ; 13(1): 37-42, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742026

RESUMEN

Background: In the last decade, the number of patients undergoing thyroidectomy has increased. Compared to other methods, thyroidectomy is a relatively safe method for treating various types of thyroid diseases. However, the blood flow rate in the thyroid gland is high, and hematoma after thyroidectomy is one of its complications. We aimed to evaluate hematoma after thyroidectomy and its related factors. Methods: In this retrospective study, 2320 patients over 20 years of age who underwent thyroidectomy in Imam Khomeini, Arvand, and Mehr Ahvaz hospitals, Khuzestan Province, southern Iran between 2011 and 2022 were enrolled. Data were analyzed using SPSS software, version 22. Results: 70.7% of the patients were in the age range of 20-50 years. Twenty-five (1.1%) of patients developed a hematoma after thyroidectomy. Males are more likely to hematoma after surgery (P=0.01). Hematoma was significantly higher in patients with a history of hypertension (P=0.001). Moreover, a significant association was found between male gender, and age over 50 years with the risk of hematoma (P<0.05). The incidence of hematoma had a statistically remarkable correlation with follicular thyroid cancer pathology (P=0.001). Other pathology diagnoses were not significantly related to hematoma formation after thyroidectomy. Conclusions: Hematoma after thyroidectomy surgery is a rare, but dangerous and life-threatening complication. It is important to identify risk factors for hematoma formation.

2.
Biotechnol Lett ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806936

RESUMEN

Salmonella typhimurium, a pathogenic bacterium with significant implications in medicine and the food industry, poses a substantial threat by causing foodborne illnesses such as typhoid fever. Accurate diagnosis of S. typhimurium is challenging due to its overlap symptoms with various diseases. This underscores the need for a precise and efficient diagnostic approach. In this study, we developed a biosensor using the Taguchi optimization method based on aptamer lateral flow assay (LFA) for the detection of S. typhimurium. Therefore, signal probe and nanobioprobe were designed using anti-Salmonella aptamer, conjugated with gold nanoparticles (GNPs), and used in LFA. The strategy of this test is based on a competitive format between the bacteria immobilized on the membrane and the bacteria present in the tested sample. Moreovere, the optimization of various factors affecting the aptamer LFA, including the concentration of bacteria (immobilized and into the sample) and the concentration of nanobioprop, were performed using the Taguchi test designing method. The data showed that the optimal conditions for the LFA reaction was 108 CFU/mL of immobilized bacteria and 1.5 µg/µL of nanobioprop concentration. Then, the visual detection limit of S. typhimurium was estimated as 105 CFU/mL. The reaction results were obtained within 20 min, and there were no significant cross-reactions with other food pathogens. In conclusion, the aptamer-LFA diagnostic method, optimized using the Taguchi approach, emerges as a reliable, straightforward, and accurate tool for the detection of S. typhimurium. Overall, this method can be a portable diagnostic kit for the detection and identification of bacteria.

3.
Avicenna J Med Biotechnol ; 16(1): 3-8, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605744

RESUMEN

Background: SARS-CoV-2 as the cause of novel coronavirus disease (COVID-19) is a member of the family Coronaviridea that has generated an emerging global health concern. Controlling and preventing the spread of the disease requires a simple, portable, and rapid diagnostic method. Today, a standard method for detecting SARS-CoV-2 is quantitative real-time reverse transcription PCR, which is time-consuming and needs an advanced device. The aim of this study was to evaluate a faster and more cost-effective field-based testing method at the point of risk. We utilized a one-step RT-LAMP assay and developed, for the first time, a simple and rapid screening detection assay targeting the Envelope (E) gene, using specific primers. Methods: For this, the total RNA was extracted from respiratory samples of COVID-19 infected patients and applied to one-step a RT-LAMP reaction. The LAMP products were visualized using green fluorescence (SYBR Green I). Sensitivity testing was conducted using different concentrations of the designed recombinant plasmid (TA-E) as positive control constructs. Additionally, selectivity testing was performed using the influenza H1N1 genome. Finally, the results were compared using with conventional real time RT-PCR. Results: It was shown that the RT-LAMP assay has a sensitivity of approximately 15 ng for the E gene of SARS-CoV-2 when using extracted total RNA. Additionally, a sensitivity of 112 pg was achieved when using an artificially prepared TA-E plasmid. Accordingly, for the detection of SARS-CoV-2 infection, the RT-LAMP had high sensitivity and specificity and also could be an alternative method for real-time RT-PCR. Conclusion: Overall, this method can be used as a portable, rapid, and easy method for detecting SARS-CoV-2 in the field and clinical laboratories.

4.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319049

RESUMEN

The lack of effective medicines or vaccines, combined with climate change and other environmental factors, annually subjects a significant proportion of the world's inhabitants to the risk of dengue virus (DENV) infection. These conditions increase the likelihood of exposure to mosquito-borne diseases such as dengue fever. Hence, many research approaches tend to develop efficient vaccine candidates against the dengue virus. Therefore, we used immunoinformatics and bioinformatics to design a construction for developing a candidate vaccine against dengue virus serotypes. In this study, the in silico structure, containing the non-structural protein 1 region (NS1) (consensus and epitope), the envelope domain III protein (EDIII) as the structural part of the virus construction, and the bc-loop of envelope domain II (EDII) as the neutralizing and protected epitope, were employed. We utilized in silico tools to enhance the immunogenicity and effectiveness of dengue virus vaccine candidates. Evaluations included refining and validating physicochemical characteristics, B and T-cell epitopes, homology modeling, and the three-dimensional structure to assess the designed vaccine's quality. In silico results for tertiary structure prediction and validation revealed high-quality modeling for all vaccine constructs. Additionally, the instructed model demonstrated stability throughout molecular dynamics simulation. The results of the immune simulation suggested that the titers of IgG and IgM could be raised to desirable values following injection into in vivo models. It can be concluded that the designed construct effectively induce humoral and cellular immunity and can be proposed as effective vaccine candidate against four dengue serotypes.Communicated by Ramaswamy H. Sarma.

5.
Avicenna J Med Biotechnol ; 15(4): 239-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078337

RESUMEN

Background: Cholera is an acute intestinal infection caused by Vibrio cholera (V. cholera). The development of antibodies against specific V. cholerae may have a therapeutic effect. In the present research, we investigated the protective effect of egg yolk Immunoglobulin (IgY), which was produced by immunizing hens with formaldehyde-killed V. cholerae O1 and subsequently the isolated IgY was orally administrated to the V. cholerae O1 infected mice for evaluation of its immunizing capability. Methods: In the current study, hens were immunized three times with formaldehyde-killed V. cholerae O1 (1.5×107 CFU/ml) and an equal volume of adjuvant. The IgY was isolated from egg yolk by polyethylene glycol method. The validity and activity of isolated IgY were confirmed with SDS-PAGE and ELISA methods, respectively. Subsequently IgY was orally administered to suckling mice following challenge with V. cholerae O1. ELISA results showed high antibody titer in the serum and egg yolk. Also, SDS-PAGE analysis showed successful purification of IgY and anti-V. cholerae IgY prevented the death of mice infected with V. cholerae O1. The anti-V. cholera IgY was administered at 2, 4, 6 hr intervals after 3 hr of inoculation of mice with V. cholerae O1. Results: Results showed that the rate of surviving mice (2 mg/ml of IgY) were 60% after 4 hr and 40% after 6 hr and the rate of surviving mice (5 mg/ml of IgY) was 70% after 4 hr and 60% after 6 hr. Conclusion: The findings suggested the egg yolk-driven IgY as a natural antibacterial protein, could be effective in the prevention and treatment of cholera disease.

6.
Hum Vaccin Immunother ; 18(5): 2079323, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35714271

RESUMEN

Flaviviruses are arthropod-borne viruses (arboviruses) that have been recently considered among the significant public health problems in defined geographical regions. In this line, there have been vaccines approved for some flaviviruses including dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV), although the efficiency of such vaccines thought to be questionable. Surprisingly, there are no effective vaccine for many other hazardous flaviviruses, including West Nile and Zika viruses. Furthermore, in spite of approved vaccines for some flaviviruses, for example DENV, alternative prophylactic vaccines seem to be still needed for the protection of a broader population, and it originates from the unsatisfying safety, and the efficacy of vaccines that have been introduced. Thus, adenovirus vector-based vaccine candidates are suggested to be effective, safe, and reliable. Interestingly, recent widespread use of adenovirus vector-based vaccines for the COVID-19 pandemic have highlighted the importance and feasibility of their widespread application. In this review, the applicability of adenovirus vector-based vaccines, as promising approaches to harness the diseases caused by Flaviviruses, is discussed.


Asunto(s)
Vacunas contra el Adenovirus , COVID-19 , Virus del Dengue , Virus de la Encefalitis Transmitidos por Garrapatas , Infección por el Virus Zika , Virus Zika , Adenoviridae/genética , Vacunas contra la COVID-19 , Humanos , Infección por el Virus Zika/prevención & control
7.
Mol Cell Probes ; 63: 101818, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461964

RESUMEN

One-third of the world's population is at risk of Dengue infection. Envelope domain 3 (EDIII) and nonstructural protein1 (NS1) proteins as the potent antigenicity regions for humoral immunity in addition to the bc loop region as a completely conserved region have been used for designing protective vaccines. We aimed to design vaccine candidates according to the bc loop, EDIII, and NS1 regions of Dengue serotype2 to be used as vaccine candidates for all serotypes of Dengue virus especially serotype 2. Firstly the bc loop region with EDII fragments at both ends as well as EDIII and NS1 regions were used which were linked with the GGGGS linker to the bc loop region. In two other strategies, the bc loop with EDII and NS1 fragments at both ends was used to increase its structural stability. Tertiary structure prediction and validation of vaccine constructs indicated that all vaccine constructs were modeled with high quality and stable structure during molecular dynamics simulation. B cell epitope mapping by Bepipred and ElliPro methods confirmed the existence of high potent epitopes in the bc loop, EDIII, and NS1 regions in both linear and conformational B cell epitopes. Furthermore, molecular docking for the bc loop region demonstrated that all designed vaccines have a higher affinity to interact with 1C19 monoclonal antibody than only the bc loop region or bc loop epitope in the protein EII. Our data of in silico studies indicated that the designed vaccines could effectively induce humoral immunity against four dengue serotypes.


Asunto(s)
Virus del Dengue , Dengue , Vacunas , Anticuerpos Antivirales , Dengue/prevención & control , Virus del Dengue/genética , Epítopos de Linfocito B , Humanos , Simulación del Acoplamiento Molecular , Proteínas del Envoltorio Viral/genética
8.
Biotechnol Lett ; 43(11): 2149-2160, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34533679

RESUMEN

OBJECTIVES: Serotype 2 of dengue virus (DENV-2) is the most prevalent cause of dengue fevers. In this study, the C-prM gene was used for specific detection of DENV-2 by RT-LAMP assay. The RT-LAMP assay was optimized using the Taguchi design of experiments. RESULTS: The efficiency of the assay in such optimal conditions resulted in 100% sensitivity, 100% specificity, and 100% overall accuracy for detection of 4 copies/µL of the genome of DENV-2. In addition, the detection of 2 copies/µL of the genome of DENV-2 was feasible, although the sensitivity was 50%. Considering the importance of the specific detection of the dengue virus serotypes, the cost-effective RT-LAMP approach can be used for rapid, specific, and sensitive detection of DENV-2. CONCLUSION: RT-LAMP, as a cost-effective method, was optimized using Taguchi array approach for specific and rapid detection of DENV-2. Such methods can facilitate the diagnosis procedure in remote regions.


Asunto(s)
Virus del Dengue , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , ARN Viral/análisis , ARN Viral/genética , Sensibilidad y Especificidad , Virología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...