Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 205: 117694, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34607085

RESUMEN

Free Nitrous Acid (FNA) pre-treatment is a promising technology demonstrated effective in improving waste activated sludge degradability and anaerobic digestion (AD) performance. Pre-treatment conditions including FNA concentration and treatment duration determine operational and capital cost of full-scale implementation, which have not been studied in long-term experiments. The knowledge of FNA pre-treatment conditions improving the AD performance is urgently required to determine suitable conditions for the technology implementation. In this work, five different FNA concentrations (2.2, 4.4, 7.2, 12 mgN/L and nitrite only without pH adjustment) and three treatment durations (8, 24 and 48 h) were studied in four lab-scale semi-continuous AD reactors for over 300 days. FNA pre-treatment was shown under all tested conditions effective in enhancing AD performances, while its effectiveness and resulted benefits varied substantially amongst different pre-treatment conditions. The long-term experiment demonstrated that the methane production, sludge reduction and digested sludge viscosity of AD are positively correlated with the FNA concentration and durations, until an optimal condition is reached, which was identified in this work to be FNA concentration of 7.2 mgN/L and treatment duration of 24 h. Microbial community changes supported the apparent observation of enhanced sludge degradation at elevating FNA concentrations applied during pre-treatment. The short-term sludge solubilization results were inconsistent with the long-term AD performance, which was potentially caused by inhibitions from stringent FNA pre-treatment conditions applied (FNA = 12 mgN/L with 24-hour treatment & FNA = 7.2 mgN/L with 48-hour treatment). Overall, results suggested FNA pre-treatment at the optimized condition is highly beneficial to WWTPs and competitive with other pre-treatment technologies, e.g., thermal hydrolysis pre-treatment. This work comprehensively evaluated the key design parameters of FNA pre-treatment process, reached a major milestone in the development and applications of FNA technologies.


Asunto(s)
Ácido Nitroso , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Metano , Aguas del Alcantarillado
2.
Water Res ; 181: 115945, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32502752

RESUMEN

Discharging drinking water treatment sludge (DWTS) to sewers could be an efficient waste management strategy with the potential to replace chemical dosing for pollutant control. This study for the first time investigated the fate of 28 different organic micropollutants (MPs) due to the dosing of iron-rich and aluminum-rich DWTS in a pilot rising main sewer. Nine MPs had an initial rapid removal within 1-hr (i.e., 10-80%) due to Fe-DWTS dosing. The formation of FeS particles due to Fe-DWTS dosing was responsible for the removal of dissolved sulfides (80% reduction comparing to control sewer). Further particle characterization using SEM-EDS, XRD and ATR-FTIR confirmed that FeS particles formation played an important role in the removal of MPs from wastewater. Adsorption of MPs onto the FeS particles was likely the possible mechanism for their rapid removal. In comparison to iron-rich DWTS, aluminum-rich DWTS had very limited beneficial effects in removing MPs from wastewater. The degradability of degradable MPs, including caffeine, paraxanthine, paracetamol, metformin, cyclamate, cephalexin, and MIAA were not affected by the DWTS dosing. Some non-degradable MPs, including cotinine, hydroxycotinine, tramadol, gabapentin, desvenlafaxine, hydrochlorothiazide, carbamazepine, fluconazole, sulfamethoxazole, acesulfame, saccharin and sucralose were also not impacted by the DWTS dosing. This study systematically assessed the additional benefits of discharging Fe-DWTS to the sewer network i.e., the removal of MPs from the liquid phase thereby reducing its load to the treatment plant. The results corroborate the discharge of Fe-rich DWTS in sewers as an effective and beneficial way of managing the waste by-product.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
3.
Chemosphere ; 254: 126811, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32334260

RESUMEN

Dosing of iron (Fe)-salts in sewers to control odour and corrosion problems have proven to be effective on phosphate and sulfide removal in downstream treatment units. However, the interaction of Fe with sludge may impact the sludge properties during wastewater treatment and sludge digestion. Herein, we investigated the downstream impacts of sewer-dosed Fe-salt on key digestate properties including digestate dewaterability. For this, Fe-salt was dosed to a sewer reactor and resultant iron-rich waste activated sludge (Fe-WAS) was digested in an anaerobic digester (AD) in the experimental line of integrated laboratory system running in parallel to a control system. Iron containing and non-iron containing digestates were sourced from the respective AD reactors of experimental and control lines. Results showed improved dewaterability in iron containing digestate than non-iron containing digestate, which was attributed to the variations in key digestate properties. Compared to non-iron containing digestate, iron containing digestate exhibited the decreased contents of bound water, soluble extracellular polymeric substances (S-EPS), protein, polysaccharide, and monovalent-to-divalent (M+/D++) cations ratio. Likewise, we observed the increased mean particle size (Dv50) for iron containing digestate than the non-iron containing digestate, but fractal dimension (Df) values were comparable. Besides, iron containing digestate exhibited a reduced degree of thixotropy, relative sludge network strength, viscosity, yield stress, flow stress, and storage/loss/complex (G'/G''/G∗) moduli but increased creep compliance and shear strain (%) than non-iron containing digestate. The combined synergistic effects of such favorable changes amongst the key properties of iron containing digestate, might have been responsible for improving it's dewaterability.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Fractales , Hierro/química , Tamaño de la Partícula , Fosfatos , Reología , Aguas del Alcantarillado/química , Sulfuros , Viscosidad , Aguas Residuales
4.
Chemosphere ; 250: 126221, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32114337

RESUMEN

This study demonstrates the full scale application of iron dosing in a metropolitan wastewater treatment plant (WWTP) and the upstream sewer system for multiple benefits. Two different dosing locations, i.e., the WWTP inlet works (Trial-1) and upstream sewer network (Trial-2) were tested in this study. Both dosing trials achieved multiple benefits such as sulfide control, phosphate removal and improved sludge dewaterability. During Trial-1, a sulfide reduction of >90% was achieved at high dosing rates (>19 kgFe ML-1) of ferrous chloride in the inlet works and in Trial-2 the in-sewer ferrous dosing had significant gas phase hydrogen sulfide (H2S) concentration reduction in the sewer network. The ferrous dosing enhanced the phosphate removal in the bioreactor up to 76% and 53 ± 2% during Trial-1 & 2, respectively. The iron ending up in the anaerobic sludge digester reduced the biogas H2S concentration by up to 36% and 45%, respectively. The dewaterability of the digested sludge was improved, with relative increases of 9.7% and 9.8%, respectively. The presence of primary clarifier showed limited impact on the downstream availability of iron for achieving the afore-mentioned multiple benefits. The iron dosing enhanced the total chemical oxygen demand removal in the primary clarifier reaching up to 49% at the high dose rates during Trial-1 and 42 ± 1% during Trial-2. This study demonstrated that multiple benefits could be achieved independent of the iron dosing location (i.e., at the WWTP inlet or in the network). Further, iron dosing at both locations enhances primary settling, beneficial for bioenergy recovery from wastewater.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Compuestos Ferrosos , Sulfuro de Hidrógeno , Hierro , Fosfatos , Aguas del Alcantarillado , Sulfuros , Aguas Residuales
5.
Water Res ; 172: 115515, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31986403

RESUMEN

In this study, the effects of free nitrous acid (FNA) pre-treatment on the rheological properties of digested sludge were investigated at a pilot-scale, along with the improvement in volatile solids (VS) destruction and biogas production. Two pilot-scale anaerobic sludge digesters were operated for one year, one receiving thickened waste activated sludge (TWAS) without pre-treatment (control) and one receiving TWAS pre-treated for 24 h at an FNA concentration of 4.9-6.1 mgN/L (nitrite = 250 mgN/L, pH = 5.0, T = 22-30 °C). The results confirmed the enhancing effect of FNA pre-treatment on methane production (37 ± 1%), consistent with previous laboratory studies. Equally importantly, FNA pre-treatment substantially reduced the shear viscosity of TWAS by 51 ± 8% at 100 s-1 and 49 ± 7% at 250 s-1, likely due to the solubilization of the TWAS (11.1 ± 0.8%). Similarly, FNA pre-treatment also reduced these viscosity parameters of the digested sludge by 80 ± 4% and 78 ± 4%, respectively, caused by both enhanced VS destruction and disintegration of the digested sludge. The dewaterability of digested sludge, assessed by dewatered solids content, capillary suction time and specific resistance to filtration, was not improved by FNA pre-treatment. The polymer requirement for dewatering was reduced by 24 ± 0.6% due to the lower solids concentration in the digested sludge achieved with FNA pre-treatment. The changes to sludge rheological properties revealed in this study further enhances the business case for the FNA pre-treatment technology.


Asunto(s)
Ácido Nitroso , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Metano , Nitritos , Eliminación de Residuos Líquidos
6.
Water Res ; 167: 115089, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31557710

RESUMEN

Although the beneficial impacts of iron dosing to sewer on activated sludge unit's performance, especially in relation to phosphate removal, have been reported, the extent of impacts on different sludge properties affecting the operation and performance of the activated sludge unit are not fully understood. In this study, we investigated the influences of iron salt dosing to sewer on both settleability and dewaterability of downstream activated sludge unit. We also examined, based on the comparative assessment of different key activated sludge properties, possible underlying factors responsible for the changes in sludge settleability and dewaterability. For this, iron chloride was dosed to a sewer reactor of integrated laboratory sewer-bioreactor system. The activated sludge samples were obtained from two separate reactors, an experimental sequencing batch reactor (SBR-E) downstream of sewer reactor receiving iron dosing and a control SBR (SBR-C) downstream of a sewer reactor without any iron dosing. Iron-conditioned sludge showed improved settleability and dewaterability over the unconditioned activated sludge. Mean differences in settleability and dewaterability between two sludges were 22.5 ±â€¯7.8 mL/g (p < 0.05) and 7.8 ±â€¯1.2% (p < 0.05), respectively. Iron-conditioned sludge showed lower contents of soluble extracellular polymeric substances (EPS) fractions, protein and polysaccharide contents, and monovalent-to-divalent (M+/D++) cations ratio, but higher humification index as compared to the unconditioned sludge. Iron-conditioned sludge exhibited marginal increment in mean particle size (Dv50) and settleable particle size classes (100-400 µm) but reduction in supracolloidal particle size classes (1-100 µm). In terms of sludge rheology, iron-conditioned sludge exhibited relatively lower relative sludge network strength, viscosity, yield stress, elastic/viscous/complex moduli (G'/G''/G*), and damping factor tan(δ) but increased shear compliance (J) and shear strain (%) with time.The iron-conditioned sludge therefore exhibited relatively weaker deformation resistance and sludge elasticity. Based on the foregoing results, we posit the combined synergistic effect of favourable changes to the key sludge properties, might be responsible for the observed improvement in settleability and dewaterability of iron-conditioned sludge.


Asunto(s)
Sales (Química) , Aguas del Alcantarillado , Reactores Biológicos , Hierro , Reología , Eliminación de Residuos Líquidos
7.
Environ Sci Technol ; 53(11): 6245-6254, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31067854

RESUMEN

Ferric (Fe3+) salt dosing is an efficient sulfide control strategy in the sewer network, with potential for multiple benefits including phosphorus removal in the biological reactors and sulfide emission control in the anaerobic digesters of wastewater treatment plant (WWTP). This paper extends the knowledge on the benefit of iron dosing by exploring its impact on the fate of organic micropollutants (MPs) in the wastewater using sewer reactors simulating a rising main sewer pipe. The sulfide produced by the sewer biofilms reacted with Fe3+ forming black colored iron sulfide (FeS). Among the selected MPs, morphine, methadone, and atenolol had >90% initial rapid removal within 5 min of ferric dosing in the sewer reactor. The ultimate removal after 6 h of retention time in the reactor reached 93-97%. Other compounds, ketamine, codeine, carbamazepine, and acesulfame had 30-70% concentration decrease. The ultimate removal varied between 35 and 70% depending on the biodegradability of those MPs. In contrast, paracetamol had no initial removal. The rapid removal of MPs was likely due to adsorption to the FeS surface, which is further confirmed by batch tests with different FeS concentrations. The results showed a direct relationship between the removal of MPs and FeS concentration. The transformation kinetics of these compounds in the reactor without Fe3+ dosing is in good agreement with biodegradation associated with the sewer biofilms in the reactor. This study revealed a significant additional benefit of dosing ferric salts in sewers, that is, the removal of MPs before the sewage enters the WWTP.


Asunto(s)
Drogas Ilícitas , Aguas Residuales , Hierro , Aguas del Alcantarillado , Sulfuros
8.
Chemosphere ; 92(8): 1053-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23628171

RESUMEN

The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated.


Asunto(s)
Carbono/química , Carbón Mineral , Cocos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Zinc/química , Adsorción , Fibra de Carbono , Microscopía Electrónica de Rastreo , Modelos Teóricos , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA