Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chaos ; 34(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829788

RESUMEN

Higher-order interactions have been instrumental in characterizing the intricate complex dynamics in a diverse range of large-scale complex systems. Our study investigates the effect of attractive and repulsive higher-order interactions in globally and non-locally coupled prey-predator Rosenzweig-MacArthur systems. Such interactions lead to the emergence of complex spatiotemporal chimeric states, which are otherwise unobserved in the model system with only pairwise interactions. Our model system exhibits a second-order transition from a chimera-like state (mixture of oscillating and steady state nodes) to a chimera-death state through a supercritical Hopf bifurcation. The origin of these states is discussed in detail along with the effect of the higher-order non-local topology which leads to the rise of a distinct and dynamical state termed as "amplitude-mediated chimera-like states." Our study observes that the introduction of higher-order attractive and repulsive interactions exhibit incoherence and promote persistence in consumer-resource population dynamics as opposed to susceptibility shown by synchronized dynamics with only pairwise interactions, and these results may be of interest to conservationists and theoretical ecologists studying the effect of competing interactions in ecological networks.

2.
Phys Rev E ; 108(4-1): 044207, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37978677

RESUMEN

We investigate the dynamical evolution of Stuart-Landau oscillators globally coupled through conjugate or dissimilar variables on simplicial complexes. We report a first-order explosive phase transition from an oscillatory state to oscillation death, with higher-order (2-simplex triadic) interactions, as opposed to the second-order transition with only pairwise (1-simplex) interactions. Moreover, the system displays four distinct homogeneous steady states in the presence of triadic interactions, in contrast to the two homogeneous steady states observed with dyadic interactions. We calculate the backward transition point analytically, confirming the numerical results and providing the origin of the dynamical states in the transition region. The results are robust against the application of noise. The study will be useful in understanding complex systems, such as ecological and epidemiological, having higher-order interactions and coupling through conjugate variables.

3.
J Math Biol ; 87(4): 58, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37702756

RESUMEN

Biological control using natural enemies with additional food resources is one of the most adopted and ecofriendly pest control techniques. Moreover, additional food is also provided to natural enemies to divert them from cannibalism. In the present work, using the theory of dynamical system, we discuss the dynamics of a cannibalistic predator prey model in the presence of different harvesting schemes in prey (pest) population and provision of additional food to predators (natural enemies). A detailed mathematical analysis and numerical evaluations have been presented to discuss the pest free state, coexistence of species, stability, occurrence of different bifurcations (saddle-node, transcritical, Hopf, Bogdanov-Takens) and the impact of additional food and harvesting schemes on the dynamics of the system. It has been obtained that the multiple coexisting equilibria and their stability depend on the additional food (quality and quantity) and harvesting rates. Interestingly, we also observe that the pest population density decreases immediately even when small amount of harvesting is implemented. Also the eradication of pest population (stable pest free state) could be achieved via variation in the additional food and implemented harvesting schemes. The individual effects of harvesting parameters on the pest density suggest that the linear harvesting scheme is more effective to control the pest population rather than constant and nonlinear harvesting schemes. In the context of biological control programs, the present theoretical work suggests different threshold values of implemented harvesting and appropriate choices of additional food to be supplied for pest eradication.


Asunto(s)
Canibalismo , Densidad de Población
4.
Phys Rev E ; 107(6-1): 064205, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37464638

RESUMEN

Reservoir Computing has found many potential applications in the field of complex dynamics. In this article, we explore the exceptional capability of the echo-state network (ESN) model to make it learn a unidirectional coupling scheme from only a few time series data of the system. We show that, once trained with a few example dynamics of a drive-response system, the machine is able to predict the response system's dynamics for any driver signal with the same coupling. Only a few time series data of an A-B type drive-response system in training is sufficient for the ESN to learn the coupling scheme. After training, even if we replace drive system A with a different system C, the ESN can reproduce the dynamics of response system B using the dynamics of new drive system C only.

5.
Phys Rev E ; 107(5): L052201, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37328971

RESUMEN

Hidden attractors are present in many nonlinear dynamical systems and are not associated with equilibria, making them difficult to locate. Recent studies have demonstrated methods of locating hidden attractors, but the route to these attractors is still not fully understood. In this Research Letter, we present the route to hidden attractors in systems with stable equilibrium points and in systems without any equilibrium points. We show that hidden attractors emerge as a result of the saddle-node bifurcation of stable and unstable periodic orbits. Real-time hardware experiments were performed to demonstrate the existence of hidden attractors in these systems. Despite the difficulties in identifying suitable initial conditions from the appropriate basin of attraction, we performed experiments to detect hidden attractors in nonlinear electronic circuits. Our results provide insights into the generation of hidden attractors in nonlinear dynamical systems.

6.
Chaos ; 33(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327496

RESUMEN

Machine learning has proven exceptionally competent in numerous applications of studying dynamical systems. In this article, we demonstrate the effectiveness of reservoir computing, a famous machine learning architecture, in learning a high-dimensional spatiotemporal pattern. We employ an echo-state network to predict the phase ordering dynamics of 2D binary systems-Ising magnet and binary alloys. Importantly, we emphasize that a single reservoir can be competent enough to process the information from a large number of state variables involved in the specific task at minimal computational training cost. Two significant equations of phase ordering kinetics, the time-dependent Ginzburg-Landau and Cahn-Hilliard-Cook equations, are used to depict the result of numerical simulations. Consideration of systems with both conserved and non-conserved order parameters portrays the scalability of our employed scheme.


Asunto(s)
Aprendizaje Automático , Física , Cinética
7.
Chaos ; 33(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37159568

RESUMEN

Synchronization among uncoupled oscillators can emerge when common noise is applied on them and is famously known as noise-induced synchronization. In previous studies, it was assumed that common noise may drive all the oscillators at the same time when they are static in space. Understanding how to develop a mathematical model that apply common noise to only a fraction of oscillators is of significant importance for noise-induced synchronization. Here, we propose a direction-dependent noise field model for noise-induced synchronization of an ensemble of mobile oscillators/agents, and the effective noise on each moving agent is a function of its direction of motion. This enables the application of common noise if the agents are oriented in the same direction. We observe not only complete synchronization of all the oscillators but also clustered states as a function of the ensemble density beyond a critical value of noise intensity, which is a characteristic of the internal dynamics of the agents. Our results provide a deeper understanding on noise-induced synchronization even in mobile agents and how the mobility of agents affects the synchronization behaviors.

8.
Phys Rev E ; 105(5-1): 054203, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706182

RESUMEN

Reservoir computing offers a great computational framework where a physical system can directly be used as computational substrate. Typically a "reservoir" is comprised of a large number of dynamical systems, and is consequently high dimensional. In this work, we use just a single simple low-dimensional dynamical system, namely, a driven pendulum, as a potential reservoir to implement reservoir computing. Remarkably we demonstrate, through numerical simulations as well as a proof-of-principle experimental realization, that one can successfully perform learning tasks using this single system. The underlying idea is to utilize the rich intrinsic dynamical patterns of the driven pendulum, especially the transient dynamics which has so far been an untapped resource. This allows even a single system to serve as a suitable candidate for a reservoir. Specifically, we analyze the performance of the single pendulum reservoir for two classes of tasks: temporal and nontemporal data processing. The accuracy and robustness of the performance exhibited by this minimal one-node reservoir in implementing these tasks strongly suggest an alternative direction in designing the reservoir layer from the point of view of efficient applications. Further, the simplicity of our learning system offers an opportunity to better understand the framework of reservoir computing in general and indicates the remarkable machine-learning potential of even a single simple nonlinear system.

9.
Chaos ; 31(3): 031101, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33810729

RESUMEN

The network of oscillators coupled via a common environment has been widely studied due to its great abundance in nature. We exploit the occurrence of explosive oscillation quenching in a network of non-identical oscillators coupled to each other indirectly via an environment for efficient reservoir computing. At the very edge of explosive transition, the reservoir achieves criticality maximizing its information processing capacity. The efficiency of the reservoir at different configurations is determined by the computational accuracy for different tasks performed by it. We analyze the dependence of accuracy on the dynamical behavior of the reservoir in terms of an order parameter symbolizing the desynchronization of the system. We found that the reservoir achieves the criticality in the steady-state region right at the edge of the hysteresis area. By computing the entropy of the reservoir for different tasks, we confirm that maximum accuracy corresponds to the edge of chaos or the edge of stability for this reservoir.

10.
Chaos ; 31(1): 011105, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33754786

RESUMEN

The role of a new form of dynamic interaction is explored in a network of generic identical oscillators. The proposed design of dynamic coupling facilitates the onset of a plethora of asymptotic states including synchronous states, amplitude death states, oscillation death states, a mixed state (complete synchronized cluster and small amplitude desynchronized domain), and bistable states (coexistence of two attractors). The dynamical transitions from the oscillatory to the death state are characterized using an average temporal interaction approximation, which agrees with the numerical results in temporal interaction. A first-order phase transition behavior may change into a second-order transition in spatial dynamic interaction solely depending on the choice of initial conditions in the bistable regime. However, this possible abrupt first-order like transition is completely non-existent in the case of temporal dynamic interaction. Besides the study on periodic Stuart-Landau systems, we present results for the paradigmatic chaotic model of Rössler oscillators and the MacArthur ecological model.

11.
Chaos ; 30(7): 073103, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32752606

RESUMEN

The key to the survival of a species lies in understanding its evolution in an ever-changing environment. We report a theoretical model that integrates frequency-dependent selection, mutation, and asexual reproduction for understanding the biological evolution of a host species in the presence of parasites. We study the host-parasite coevolution in a one-dimensional genotypic space by considering a dynamic and heterogeneous environment modeled using a fitness landscape. It is observed that the presence of parasites facilitates a faster evolution of the host population toward its fitness maximum. We also find that the time required to reach the maximum fitness (optimization time) decreases with increased infection from the parasites. However, the overall fitness of the host population declines due to the parasitic infection. In the limit where parasites are considered to evolve much faster than the hosts, the optimization time reduces even further. Our findings indicate that parasites can play a crucial role in the survival of its host in a rapidly changing environment.


Asunto(s)
Parásitos , Animales , Evolución Biológica , Interacciones Huésped-Parásitos/genética , Mutación/genética , Parásitos/genética , Reproducción/genética , Reproducción Asexuada/genética
12.
Chaos ; 30(3): 033114, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32237763

RESUMEN

Many systems exhibit both attractive and repulsive types of interactions, which may be dynamic or static. A detailed understanding of the dynamical properties of a system under the influence of dynamically switching attractive or repulsive interactions is of practical significance. However, it can also be effectively modeled with two coexisting competing interactions. In this work, we investigate the effect of time-varying attractive-repulsive interactions as well as the hybrid model of coexisting attractive-repulsive interactions in two coupled nonlinear oscillators. The dynamics of two coupled nonlinear oscillators, specifically limit cycles as well as chaotic oscillators, are studied in detail for various dynamical transitions for both cases. Here, we show that dynamic or static attractive-repulsive interactions can induce an important transition from the oscillatory to steady state in identical nonlinear oscillators due to competitive effects. The analytical condition for the stable steady state in dynamic interactions at the low switching time period and static coexisting interactions are calculated using linear stability analysis, which is found to be in good agreement with the numerical results. In the case of a high switching time period, oscillations are revived for higher interaction strength.

13.
Chaos ; 29(6): 063127, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31266335

RESUMEN

We report the emergence of an explosive death transition in a network of identical oscillators interacting to other oscillators through nonlocal coupling in the presence of a common environment. This transition has an abrupt and irreversible characteristic in parameter space which has been a common signature of first order phase transition. For the similar coupling scheme, both ensemble of chaotic and periodic oscillators showed qualitatively similar kind of transition, hence making it a universal transition. The details of which along with dependence of environmental and nonlocal coupling on this first-order like phase transition is also discussed.

14.
Sci Rep ; 7(1): 7936, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28801562

RESUMEN

We report the occurrence of an explosive death transition for the first time in an ensemble of identical limit cycle and chaotic oscillators coupled via mean-field diffusion. In both systems, the variation of the normalized amplitude with the coupling strength exhibits an abrupt and irreversible transition to death state from an oscillatory state and this first order phase transition to death state is independent of the size of the system. This transition is quite general and has been found in all the coupled systems where in-phase oscillations co-exist with a coupling dependent homogeneous steady state. The backward transition point for this phase transition has been calculated using linear stability analysis which is in complete agreement with the numerics.

15.
Phys Rev E ; 95(4-1): 042215, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28505827

RESUMEN

We present a method for attractor selection in multistable dynamical systems. It involves a feedback term that is active only when the dynamics of the system is in a particular fraction of state space of the attractor. We implement this method first on a simplest symmetric chaotic flow and then on a bistable neuronal system. We find that adding this space-dependent feedback term to the dynamical equations of these systems will drive the dynamics to the desired attractor by annihilating the other. We further demonstrate that the attractor selection due to this feedback term can be used in construction of logic gates, which is one of the practical applications of the proposed method.

16.
Phys Rev E ; 94(6-1): 062218, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28085412

RESUMEN

We study the dynamics of nonlinear oscillators coupled through environmental diffusive coupling. The interaction between the dynamical systems is maintained through its agents which, in turn, interact globally with each other in the common dynamical environment. We show that this form of coupling scheme can induce an important transition like phase-flip transition as well transitions among oscillation quenching states in identical limit-cycle oscillators. This behavior is analyzed in the parameter plane by analytical and numerical studies of specific cases of the Stuart-Landau oscillator and van der Pol oscillator. Experimental evidences of the phase-flip transition and quenching states are shown using an electronic version of the van der Pol oscillators.

17.
Artículo en Inglés | MEDLINE | ID: mdl-26382496

RESUMEN

We study the phenomena of oscillation quenching in a system of limit cycle oscillators which are coupled indirectly via a dynamic environment. The dynamics of the environment is assumed to decay exponentially with some decay parameter. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). The critical curves for the regions of oscillation quenching as a function of coupling strength and decay parameter of the environment are obtained analytically using linear stability analysis and are found to be consistent with the numerics.

18.
Artículo en Inglés | MEDLINE | ID: mdl-25615164

RESUMEN

The complete synchronization between the outermost oscillators using the mixed coupling in relay coupled systems is studied. Mixed coupling has two types of coupling functions: coupling between similar or dissimilar variables. We examine the complete synchronization in relay-coupled systems by the largest transverse Lyapunov exponent and synchronization error. We show numerically for Rössler and Lorenz oscillators that the combination of these two types of coupling functions is able to decrease the critical coupling strength for complete synchronization as well as it also suppress oscillations for larger coupling strength.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 057204, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23004911

RESUMEN

We study the dynamics of nonlinear oscillators under mean-field diffusive coupling. We observe that this form of coupling leads to amplitude death via a synchronization transition in the parameter space of the coupling strength and mean-field control parameter. A general criterion for amplitude death for any given dynamical system with mean-field diffusion is obtained, and these dynamical transitions are characterized using various indices such as average phase difference, Lyapunov exponents, and average amplitude. This behavior is analyzed in the parameter plane by numerical studies of specific cases of the Landau-Stuart limit-cycle oscillator, and Rössler, Lorenz, FitzHugh-Nagumo excitable, and Chua systems.

20.
Chaos ; 22(2): 023147, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22757554

RESUMEN

We study the dynamics of nonlinear oscillators indirectly coupled through a dynamical environment or a common medium. We observed that this form of indirect coupling leads to synchronization and phase-flip transition in periodic as well as chaotic regime of oscillators. The phase-flip transition from in- to anti-phase synchronization or vise-versa is analyzed in the parameter plane with examples of Landau-Stuart and Rössler oscillators. The dynamical transitions are characterized using various indices such as average phase difference, frequency, and Lyapunov exponents. Experimental evidence of the phase-flip transition is shown using an electronic version of the van der Pol oscillators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...