Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 11: 584695, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193047

RESUMEN

Genome-wide association studies have identified putative ischemic stroke risk genes, yet, their expression after stroke is unexplored in spite of growing interest in elucidating their specific role and identifying candidate genes for stroke treatment. Thus, we took an exploratory approach to investigate sexual dimorphism, alternative splicing, and etiology in putative risk gene expression in blood following cardioembolic, atherosclerotic large vessel disease and small vessel disease/lacunar causes of ischemic stroke in each sex compared to controls. Whole transcriptome arrays assessed 71 putative stroke/vascular risk factor genes for blood RNA expression at gene-, exon-, and alternative splicing-levels. Male (n = 122) and female (n = 123) stroke and control volunteers from three university medical centers were matched for race, age, vascular risk factors, and blood draw time since stroke onset. Exclusion criteria included: previous stroke, drug abuse, subarachnoid or intracerebral hemorrhage, hemorrhagic transformation, infection, dialysis, cancer, hematological abnormalities, thrombolytics, anticoagulants or immunosuppressants. Significant differential gene expression (fold change > |1.2|, p < 0.05, partial correlation > |0.4|) and alternative splicing (false discovery rate p < 0.3) were assessed. At gene level, few were differentially expressed: ALDH2, ALOX5AP, F13A1, and IMPA2 (males, all stroke); ITGB3 (females, cardioembolic); ADD1 (males, atherosclerotic); F13A1, IMPA2 (males, lacunar); and WNK1 (females, lacunar). GP1BA and ITGA2B were alternatively spliced in both sexes (all patients vs. controls). Six genes in males, five in females, were alternatively spliced in all stroke compared to controls. Alternative splicing and exon-level analyses associated many genes with specific etiology in either sex. Of 71 genes, 70 had differential exon-level expression in stroke patients compared to control subjects. Among stroke patients, 24 genes represented by differentially expressed exons were male-specific, six were common between sexes, and two were female-specific. In lacunar stroke, expression of 19 differentially expressed exons representing six genes (ADD1, NINJ2, PCSK9, PEMT, SMARCA4, WNK1) decreased in males and increased in females. Results demonstrate alternative splicing and sexually dimorphic expression of most putative risk genes in stroke patients' blood. Since expression was also often cause-specific, sex, and etiology are factors to consider in stroke treatment trials and genetic association studies as society trends toward more personalized medicine.

2.
Ann Clin Transl Neurol ; 7(9): 1648-1660, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32785988

RESUMEN

OBJECTIVE: Single nucleotide polymorphisms (SNPs) contribute to complex disorders such as ischemic stroke (IS). Since SNPs could affect IS by altering gene expression, we studied the association of common SNPs with changes in mRNA expression (i.e. expression quantitative trait loci; eQTL) in blood after IS. METHODS: RNA and DNA were isolated from 137 patients with acute IS and 138 vascular risk factor controls (VRFC). Gene expression was measured using Affymetrix HTA 2.0 microarrays and SNP variants were assessed with Axiom Biobank Genotyping microarrays. A linear model with a genotype (SNP) × diagnosis (IS and VRFC) interaction term was fit for each SNP-gene pair. RESULTS: The eQTL interaction analysis revealed significant genotype × diagnosis interaction for four SNP-gene pairs as cis-eQTL and 70 SNP-gene pairs as trans-eQTL. Cis-eQTL involved in the inflammatory response to IS included rs56348411 which correlated with neurogranin expression (NRGN), rs78046578 which correlated with CXCL10 expression, rs975903 which correlated with SMAD4 expression, and rs62299879 which correlated with CD38 expression. These four genes are important in regulating inflammatory response and BBB stabilization. SNP rs148791848 was a strong trans-eQTL for anosmin-1 (ANOS1) which is involved in neural cell adhesion and axonal migration and may be important after stroke. INTERPRETATION: This study highlights the contribution of genetic variation to regulating gene expression following IS. Specific inflammatory response to stroke is at least partially influenced by genetic variation. This has implications for progressing toward personalized treatment strategies. Additional research is required to investigate these genes as therapeutic targets.


Asunto(s)
Regulación de la Expresión Génica/genética , Variación Genética/genética , Inflamación/genética , Accidente Cerebrovascular Isquémico/genética , Sitios de Carácter Cuantitativo/genética , Anciano , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
3.
Transl Stroke Res ; 10(1): 19-25, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29651704

RESUMEN

The histone deacetylase 9 (HDAC9) polymorphism rs2107595 is associated with an increased risk for large vessel atherosclerotic stroke (LVAS). In humans, there remains a need to better understand this HDAC9 polymorphism's contribution to large vessel stroke. In this pilot study, we evaluated whether the HDAC9 polymorphism rs2107595 is associated with differences in leukocyte gene expression in patients with LVAS. HDAC9 SNP rs2107595 was genotyped in 155 patients (43 LVAS and 112 vascular risk factor controls). RNA isolated from blood was processed on whole genome microarrays. Gene expression was compared between HDAC9 risk allele-positive and risk allele-negative LVAS patients and controls. Functional analysis identified canonical pathways and molecular functions associated with rs2107595 in LVAS. In HDAC9 SNP rs2107595 risk allele-positive LVAS patients, there were 155 genes differentially expressed compared to risk allele-negative patients (fold change > |1.2|, p < 0.05). The 155 genes separated the risk allele-positive and risk allele-negative LVAS patients on a principal component analysis. Pathways associated with HDAC9 risk allele-positive status involved IL-6 signaling, cholesterol efflux, and platelet aggregation. These preliminary data suggest an association with the HDAC9 rs2107595 risk allele and peripheral immune, lipid, and clotting systems in LVAS. Further study is required to evaluate whether these differences are related to large vessel atherosclerosis and stroke risk.


Asunto(s)
Aterosclerosis/genética , Proteínas Sanguíneas/metabolismo , Regulación de la Expresión Génica/genética , Histona Desacetilasas/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Represoras/genética , Accidente Cerebrovascular/genética , Anciano , Aterosclerosis/complicaciones , Proteínas Sanguíneas/genética , Femenino , Humanos , Inflamación/etiología , Inflamación/genética , Metabolismo de los Lípidos/genética , Masculino , Persona de Mediana Edad , Proyectos Piloto , Análisis de Componente Principal , Factores de Riesgo , Transducción de Señal/fisiología , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología
4.
J Cereb Blood Flow Metab ; 39(9): 1818-1835, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29651892

RESUMEN

Understanding how the blood transcriptome of human intracerebral hemorrhage (ICH) differs from ischemic stroke (IS) and matched controls (CTRL) will improve understanding of immune and coagulation pathways in both disorders. This study examined RNA from 99 human whole-blood samples using GeneChip® HTA 2.0 arrays to assess differentially expressed transcripts of alternatively spliced genes between ICH, IS and CTRL. We used a mixed regression model with FDR-corrected p(Dx) < 0.2 and p < 0.005 and |FC| > 1.2 for individual comparisons. For time-dependent analyses, subjects were divided into four time-points: 0(CTRL), <24 h, 24-48 h, >48 h; 489 transcripts were differentially expressed between ICH and CTRL, and 63 between IS and CTRL. ICH had differentially expressed T-cell receptor and CD36 genes, and iNOS, TLR, macrophage, and T-helper pathways. IS had more non-coding RNA. ICH and IS both had angiogenesis, CTLA4 in T lymphocytes, CD28 in T helper cells, NFAT regulation of immune response, and glucocorticoid receptor signaling pathways. Self-organizing maps revealed 4357 transcripts changing expression over time in ICH, and 1136 in IS. Understanding ICH and IS transcriptomes will be useful for biomarker development, treatment and prevention strategies, and for evaluating how well animal models recapitulate human ICH and IS.


Asunto(s)
Isquemia Encefálica/genética , Hemorragia Cerebral/genética , Accidente Cerebrovascular/genética , Transcriptoma , Anciano , Empalme Alternativo , Isquemia Encefálica/sangre , Hemorragia Cerebral/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/sangre
5.
Stroke ; 47(12): 2896-2903, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27834745

RESUMEN

BACKGROUND AND PURPOSE: Although peripheral blood mRNA and micro-RNA change after ischemic stroke, any role for long noncoding RNA (lncRNA), which comprise most of the genome and have been implicated in various diseases, is unknown. Thus, we hypothesized that lncRNA expression also changes after stroke. METHODS: lncRNA expression was assessed in 266 whole-blood RNA samples drawn once per individual from patients with ischemic stroke and matched with vascular risk factor controls. Differential lncRNA expression was assessed by ANCOVA (P<0.005; fold change>|1.2|), principal components analysis, and hierarchical clustering on a derivation set (n=176) and confirmed on a validation set (n=90). Poststroke temporal lncRNA expression changes were assessed using ANCOVA with confounding factor correction (P<0.005; partial correlation with time since event >|0.4|). Because sexual dimorphism exists in stroke, analyses were performed for each sex separately. RESULTS: A total of 299 lncRNAs were differentially expressed between stroke and control males, whereas 97 lncRNAs were differentially expressed between stroke and control females. Significant changes of lncRNA expression with time after stroke were detected for 49 lncRNAs in men and 31 lncRNAs in women. Some differentially expressed lncRNAs mapped close to genomic locations of previously identified putative stroke-risk genes, including lipoprotein, lipoprotein(a)-like 2, ABO (transferase A, α1-3-N-acetylgalactosaminyltransferase; transferase B, α1-3-galactosyltransferase) blood group, prostaglandin 12 synthase, and α-adducins. CONCLUSIONS: This study provides evidence of altered and sexually dimorphic lncRNA expression in peripheral blood of patients with stroke compared with that of controls and suggests that lncRNAs have potential for stroke biomarker development. Some regulated lncRNA could regulate some previously identified putative stroke-risk genes.


Asunto(s)
Isquemia Encefálica/sangre , ARN Largo no Codificante/sangre , Accidente Cerebrovascular/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Isquemia Encefálica/genética , Femenino , Regulación de la Expresión Génica , Sitios Genéticos , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Accidente Cerebrovascular/genética , Factores de Tiempo
6.
Neurology ; 87(21): 2198-2205, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27784773

RESUMEN

OBJECTIVE: To evaluate microRNA let7i in ischemic stroke and its regulation of leukocytes. METHODS: A total of 212 patients were studied: 106 with acute ischemic stroke and 106 controls matched for risk factors. RNA from circulating leukocytes was isolated from blood collected in PAXgene tubes. Let7i microRNA expression was assessed using TaqMan quantitative reverse transcription PCR. To assess let7i regulation of gene expression in stroke, messenger RNA (mRNA) from leukocytes was measured by whole-genome Human Transcriptome Array Affymetrix microarray. Given microRNAs act to destabilize and degrade their target mRNA, mRNAs that inversely correlated with let7i were identified. To demonstrate let7i posttranscriptional regulation of target genes, a 3' untranslated region luciferase assay was performed. Target protein expression was assessed using ELISA. RESULTS: Let7i was decreased in patients with acute ischemic stroke (fold change -1.70, p < 0.00001). A modest inverse correlation between let7i and NIH Stroke Scale score at admission (r = -0.32, p = 0.02), infarct volume (r = -0.21, p = 0.04), and plasma MMP9 (r = -0.46, p = 0.01) was identified. The decrease in let7i was associated with increased expression of several of its mRNA targets, including CD86, CXCL8, and HMGB1. In vitro studies confirm let7i posttranscriptional regulation of target genes CD86, CXCL8, and HMGB1. Functional analysis predicted let7i regulates pathways involved in leukocyte activation, recruitment, and proliferation including canonical pathways of CD86 signaling in T helper cells, HMGB1 signaling, and CXCL8 signaling. CONCLUSIONS: Let7i is decreased in circulating leukocytes of patients with acute ischemic stroke. Mechanisms by which let7i regulates inflammatory response post stroke include targeting CD86, CXCL8, and HMGB1.


Asunto(s)
Isquemia Encefálica/sangre , Leucocitos/metabolismo , MicroARNs/sangre , Accidente Cerebrovascular/sangre , Antígeno B7-2/sangre , Biomarcadores/sangre , Análisis Químico de la Sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteína HMGB1/sangre , Humanos , Interleucina-8/sangre , Masculino , Metaloproteinasa 9 de la Matriz/sangre , Análisis por Micromatrices , Persona de Mediana Edad , ARN Mensajero/metabolismo , Factores de Riesgo , Índice de Severidad de la Enfermedad
7.
J Cereb Blood Flow Metab ; 36(8): 1374-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26661204

RESUMEN

Because our recent studies have demonstrated that miR-122 decreased in whole blood of patients and in whole blood of rats following ischemic stroke, we tested whether elevating blood miR-122 would improve stroke outcomes in rats. Young adult rats were subjected to a temporary middle cerebral artery occlusion (MCAO) or sham operation. A polyethylene glycol-liposome-based transfection system was used to administer a miR-122 mimic after MCAO. Neurological deficits, brain infarction, brain vessel integrity, adhesion molecule expression and expression of miR-122 target and indirect-target genes were examined in blood at 24 h after MCAO with or without miR-122 treatment. miR-122 decreased in blood after MCAO, whereas miR-122 mimic elevated miR-122 in blood 24 h after MCAO. Intravenous but not intracerebroventricular injection of miR-122 mimic decreased neurological deficits and brain infarction, attenuated ICAM-1 expression, and maintained vessel integrity after MCAO. The miR-122 mimic also down-regulated direct target genes (e.g. Vcam1, Nos2, Pla2g2a) and indirect target genes (e.g. Alox5, Itga2b, Timp3, Il1b, Il2, Mmp8) in blood after MCAO which are predicted to affect cell adhesion, diapedesis, leukocyte extravasation, eicosanoid and atherosclerosis signaling. The data show that elevating miR-122 improves stroke outcomes and we postulate this occurs via downregulating miR-122 target genes in blood leukocytes.


Asunto(s)
Infarto de la Arteria Cerebral Media/sangre , MicroARNs/sangre , MicroARNs/genética , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Sistemas de Liberación de Medicamentos , Infarto de la Arteria Cerebral Media/genética , Inyecciones Intravenosas , Leucocitos/metabolismo , Liposomas , Masculino , MicroARNs/administración & dosificación , Polietilenglicoles/química , Ratas Sprague-Dawley , Resultado del Tratamiento
8.
PLoS One ; 9(11): e111921, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25380290

RESUMEN

Coccidioidomycosis is a fungal disease acquired through the inhalation of spores of Coccidioides spp., which afflicts primarily humans and other mammals. It is endemic to areas in the southwestern United States, including the San Joaquin Valley portion of Kern County, California, our region of interest (ROI). Recently, incidence of coccidioidomycosis, also known as valley fever, has increased significantly, and several factors including climate change have been suggested as possible drivers for this observation. Up to date details about the ecological niche of C. immitis have escaped full characterization. In our project, we chose a three-step approach to investigate this niche: 1) We examined Landsat-5-Thematic-Mapper multispectral images of our ROI by using training pixels at a 750 m × 750 m section of Sharktooth Hill, a site confirmed to be a C. immitis growth site, to implement a Maximum Likelihood Classification scheme to map out the locations that could be suitable to support the growth of the pathogen; 2) We used the websoilsurvey database of the US Department of Agriculture to obtain soil parameter data; and 3) We investigated soil samples from 23 sites around Bakersfield, California using a multiplex Polymerase Chain Reaction (PCR) based method to detect the pathogen. Our results indicated that a combination of satellite imagery, soil type information, and multiplex PCR are powerful tools to predict and identify growth sites of C. immitis. This approach can be used as a basis for systematic sampling and investigation of soils to detect Coccidioides spp.


Asunto(s)
Coccidioides/genética , Coccidioides/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Imágenes Satelitales , Microbiología del Suelo , California , Coccidioides/crecimiento & desarrollo , Coccidioides/fisiología , Tecnología de Sensores Remotos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...