Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 31(29): 294003, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213675

RESUMEN

We report a novel mechanism that allows the incorporation of Si into GaN nanowires up to and beyond the solubility limit. This mechanism is documented during the growth on vicinal (misoriented) SiC/Si hybrid substrates having the step bunches. Nanowires that are grown at these locations become heavily Si doped. Such high Si concentrations were verified by secondary-ion mass spectrometry. Photoluminescence data also point to very high carrier concentrations. Moreover, Raman spectroscopy together with quantum chemical modelling shows the build up of Si into Ga sites and indicates even the possibility of the formation of a Ga(Si)N solid solution. The microscopic mechanism responsible for heavy doping and even alloying is diffusion driven by the mechano-chemical effect, which allows for the extremely efficient injection of Si atoms into the nanowires from the step bunches at the vicinal SiC/Si substrates.

2.
Nanotechnology ; 31(24): 244003, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32066120

RESUMEN

The influence of hydrogen plasma treatment on the electrical and optical properties of vertical GaN nanowire (NW)/Si heterostructures synthesized via plasma assisted molecular beam epitaxy is studied. The effect of the treatment is thoroughly studied via variation of the passivation duration. Photoluminescence investigation demonstrates that the passivation affects the doping of the GaN NWs. The samples were processed as photodiodes with a top transparent electrode to obtain detailed information about the n-GaN NWs/p-Si heterointerface under illumination. The electron beam induced current measurements demonstrated the absence of potential barriers between the active parts of the diode and the contacts, indicating ohmic behavior of the latter. I-V characteristics obtained in the dark and under illumination show that hydrogen can effectively passivate the recombination centers at the GaN NWs/Si heterointerface. The optimum passivation duration, providing improved electrical properties, is found to be 10 min within the studied passivation regimes. It is demonstrated that longer treatment causes degradation of the electrical properties. The discovered phenomenon is discussed in detail.

3.
Sci Rep ; 10(1): 735, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959825

RESUMEN

Semiconducting nanowires, unlike bulk, can be grown in both wurtzite and zincblende crystal phases. This unique feature allows for growth and investigation of technologically important and previously unexplored materials, such as wurtzite AlGaAs. Here we grow a series of wurtzite AlGaAs nanowires with Al content varying from 0.1 to 0.6, on silicon substrates and through a comparative structural and optical analysis we experimentally derive, for the first time, the formula for the bandgap of wurtzite AlGaAs. Moreover, bright emission and short lifetime of our nanowires suggest that wurtzite AlGaAs is a direct bandgap material.

4.
Nanotechnology ; 30(39): 395602, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31234150

RESUMEN

The role of Si (111) substrate surface preparation and buffer layer composition in the growth, electronic and optical properties of the GaN nanowires (NWs) synthesized via plasma-assisted molecular beam epitaxy is studied. A comparison study of GaN NWs growth on the bare Si (111) substrate, silicon nitride interlayer, predeposited AlN and GaO x buffer layers, monolayer thick Ga wetting layer and GaN seeding layer prepared by the droplet epitaxy is performed. It is demonstrated that the homogeneity and the morphology of the NW arrays drastically depend on the chosen buffer layer and surface preparation technique. An effect of the buffer and seeding layers on the nucleation and desorption is also discussed. The lowest NWs surface density of 14 µm-2 is obtained on AlN buffer layer and the highest density exceeding the latter value by more than an order of magnitude corresponds to the growth on the 0.3 ML thick Ga wetting layer. It is shown, that the highest NWs mean elongation rate is obtained with AlN buffer layer, while the lowest elongation rate corresponds to the bare Si (111) surface and it is twice as lower as the first case. It is found, that use of AlN buffer layer corresponds to the most homogeneous NWs array with the smallest length dispersion while the least homogeneous array corresponds to the bare Si substrate. Vertically aligned GaN NWs array on the wide bandgap GaO x semiconductor buffer layer grown by plasma-enhanced chemical vapor deposition demonstrates its potential for electronic applications. Photoluminescence (PL) study of the synthesized samples is characterized by an intense optical response related to the excitons bound to neutral donors. The highest PL intensity is obtained in the sample with AlN buffer layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA