Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507470

RESUMEN

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Hierro/metabolismo , Glioma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Células Madre Neoplásicas/patología , Azufre/metabolismo , Azufre/uso terapéutico , Fumaratos , Línea Celular Tumoral , Fosfohidrolasa PTEN/metabolismo
2.
Cell Biochem Biophys ; 81(4): 765-776, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37695502

RESUMEN

Free fatty acids (FFAs) hepatic accumulation and the resulting oxidative stress contribute to several chronic liver diseases including nonalcoholic steatohepatitis. However, the underlying pathological mechanisms remain unclear. In this study, we propose a novel mechanism whereby the toxicity of FFAs detrimentally affects DNA repair activity. Specifically, we have discovered that oleic acid (OA), a prominent dietary free fatty acid, inhibits the activity of DNA polymerase ß (Pol ß), a crucial enzyme involved in base excision repair (BER), by actively competing with 2'-deoxycytidine-5'-triphosphate. Consequently, OA hinders the efficiency of BER, leading to the accumulation of DNA damage in hepatocytes overloaded with FFAs. Additionally, the excessive presence of both OA and palmitic acid (PA) lead to mitochondrial dysfunction in hepatocytes. These findings suggest that the accumulation of FFAs hampers Pol ß activity and contributes to mitochondrial dysfunction, shedding light on potential pathogenic mechanisms underlying FFAs-related diseases.


Asunto(s)
ADN Polimerasa beta , Ácido Oléico , Ácido Oléico/farmacología , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Reparación del ADN , Hepatocitos/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo
3.
EMBO Rep ; 24(8): e56437, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37306047

RESUMEN

Homologous recombination (HR), a form of error-free DNA double-strand break (DSB) repair, is important for the maintenance of genomic integrity. Here, we identify a moonlighting protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a regulator of HR repair, which is mediated through HDAC1-dependent regulation of RAD51 stability. Mechanistically, in response to DSBs, Src signaling is activated and mediates GAPDH nuclear translocation. Then, GAPDH directly binds with HDAC1, releasing it from its suppressor. Subsequently, activated HDAC1 deacetylates RAD51 and prevents it from undergoing proteasomal degradation. GAPDH knockdown decreases RAD51 protein levels and inhibits HR, which is re-established by overexpression of HDAC1 but not SIRT1. Notably, K40 is an important acetylation site of RAD51, which facilitates stability maintenance. Collectively, our findings provide new insights into the importance of GAPDH in HR repair, in addition to its glycolytic activity, and they show that GAPDH stabilizes RAD51 by interacting with HDAC1 and promoting HDAC1 deacetylation of RAD51.


Asunto(s)
Reparación del ADN , Reparación del ADN por Recombinación , Recombinación Homóloga , Roturas del ADN de Doble Cadena , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
4.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240137

RESUMEN

Lung adenocarcinoma (LUAD) is the most common lung cancer, with high mortality. As a tumor-suppressor gene, JWA plays an important role in blocking pan-tumor progression. JAC4, a small molecular-compound agonist, transcriptionally activates JWA expression both in vivo and in vitro. However, the direct target and the anticancer mechanism of JAC4 in LUAD have not been elucidated. Public transcriptome and proteome data sets were used to analyze the relationship between JWA expression and patient survival in LUAD. The anticancer activities of JAC4 were determined through in vitro and in vivo assays. The molecular mechanism of JAC4 was assessed by Western blot, quantitative real-time PCR (qRT-PCR), immunofluorescence (IF), ubiquitination assay, co-immunoprecipitation, and mass spectrometry (MS). Cellular thermal shift and molecule-docking assays were used for confirmation of the interactions between JAC4/CTBP1 and AMPK/NEDD4L. JWA was downregulated in LUAD tissues. Higher expression of JWA was associated with a better prognosis of LUAD. JAC4 inhibited LUAD cell proliferation and migration in both in-vitro and in-vivo models. Mechanistically, JAC4 increased the stability of NEDD4L through AMPK-mediated phosphorylation at Thr367. The WW domain of NEDD4L, an E3 ubiquitin ligase, interacted with EGFR, thus promoting ubiquitination at K716 and the subsequent degradation of EGFR. Importantly, the combination of JAC4 and AZD9191 synergistically inhibited the growth and metastasis of EGFR-mutant lung cancer in both subcutaneous and orthotopic NSCLC xenografts. Furthermore, direct binding of JAC4 to CTBP1 blocked nuclear translocation of CTBP1 and then removed its transcriptional suppression on the JWA gene. The small-molecule JWA agonist JAC4 plays a therapeutic role in EGFR-driven LUAD growth and metastasis through the CTBP1-mediated JWA/AMPK/NEDD4L/EGFR axis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proliferación Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica
5.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37094986

RESUMEN

BACKGROUND: Tumor-associated macrophages are mainly polarized into the M2 phenotype, remodeling the tumor microenvironment and promoting tumor progression by secreting various cytokines. METHODS: Tissue microarray consisting of prostate cancer (PCa), normal prostate, and lymph node metastatic samples from patients with PCa were stained with Yin Yang 1 (YY1) and CD163. Transgenic mice overexpressing YY1 were constructed to observe PCa tumorigenesis. Furthermore, in vivo and in vitro experiments, including CRISPR-Cas9 knock-out, RNA sequencing, chromatin immunoprecipitation (ChIP) sequencing, and liquid-liquid phase separation (LLPS) assays, were performed to investigate the role and mechanism of YY1 in M2 macrophages and PCa tumor microenvironment. RESULTS: YY1 was highly expressed in M2 macrophages in PCa and was associated with poorer clinical outcomes. The proportion of tumor-infiltrated M2 macrophages increased in transgenic mice overexpressing YY1. In contrast, the proliferation and activity of anti-tumoral T lymphocytes were suppressed. Treatment targeting YY1 on M2 macrophages using an M2-targeting peptide-modified liposome carrier suppressed PCa cell lung metastasis and generated synergistic anti-tumoral effects with PD-1 blockade. IL-4/STAT6 pathway regulated YY1, and YY1 increased the macrophage-induced PCa progression by upregulating IL-6. Furthermore, by conducting H3K27ac-ChIP-seq in M2 macrophages and THP-1, we found that thousands of enhancers were gained during M2 macrophage polarization, and these M2-specific enhancers were enriched in YY1 ChIP-seq signals. In addition, an M2-specific IL-6 enhancer upregulated IL-6 expression through long-range chromatin interaction with IL-6 promoter in M2 macrophages. During M2 macrophage polarization, YY1 formed an LLPS, in which p300, p65, and CEBPB acted as transcriptional cofactors. CONCLUSIONS: Phase separation of the YY1 complex in M2 macrophages upregulated IL-6 by promoting IL-6 enhancer-promoter interactions, thereby increasing PCa progression.


Asunto(s)
Interleucina-6 , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Interleucina-6/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/patología , Macrófagos/metabolismo , Ratones Transgénicos , Microambiente Tumoral , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
6.
Cell Death Discov ; 8(1): 444, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333291

RESUMEN

Enhancer release and retargeting (ERR) events could activate disease-causing gene promoters for increasing the expression level of oncogenes. Meanwhile, class A orphan GPCRs (oGPCRs) are known as potential biomarkers or drug targets for various cancers, such as gastric cancer (GC). Hence, systemic investigation of ERR events for class A oGPCRs in GC could help to explore biomarkers for GC. In this study, ENCODE and GTEx eQTL data were utilized to define ERR events in GC. Only GPR35 was then detected that could be activated by ERR in GC based on these data and ChIP-seq. Then, activated GPR35 functional in GC cells were explored by flow cytometry, cell-based wound healing assay, Transwell migration assay, and M2 polarization of macrophages assay. Meanwhile, according to TCGA and GEO database, overall survival, immune-related gene expression, and immune cell infiltration level in different GPR35 expressions were calculated. Here, we found ERR event activate GPR35 results in GC cells proliferation and migration, and partly immune cells significance exhaustion (CD8 + T-cells and CD4 + memory T-cells) and/or infiltration (T-cells and macrophage). Meanwhile, high GRP35 level leads to a poor prognosis in GC patients, probably partly due to it promoting the immune infiltration level of macrophages and then inducing polarization of M2 macrophages. Notably, GPR35's high expression in CTSB+ and CD68 + macrophage could be a genetic indicator for early warning of primary GC. Hence, our findings provide a novel activation approach for oGPCRs, and GPR35 could be determined as a new drugable receptor and early genetic indicator for GC.

7.
Adv Sci (Weinh) ; 9(28): e2201889, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35975461

RESUMEN

Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified. Moreover, ABL overexpression inhibits GC cell apoptosis and promotes GC cell survival and multidrug resistance in GC xenograft and organoid models. Mechanistically, ABL directly binds to the RNA-binding protein IGF2BP1 via its KH1/2 domain, and then IGF2BP1 further recognizes the METTL3-mediated m6A modification on ABL, which maintains ABL stability. In addition, ABL can bind to the WD1/WD2 domain of APAF1, which competitively prevent cytochrome c from interacting with APAF1, blocking apoptosome assembly and caspase-9/3 activation; these events lead to resistance to cell death in GC cells. Intriguingly, targeting ABL using encapsulated liposomal siRNA can significantly enhance the sensitivity of GC cells to chemotherapy. Collectively, the results suggest that ABL can be a potential prognostic biomarker and therapeutic target in GC.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Apoptosis/genética , Apoptosomas/metabolismo , Factor Apoptótico 1 Activador de Proteasas/genética , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Biomarcadores , Caspasa 9/metabolismo , Citocromos c/metabolismo , Citocromos c/uso terapéutico , Resistencia a Múltiples Medicamentos , Humanos , Metiltransferasas/metabolismo , Metiltransferasas/uso terapéutico , ARN Largo no Codificante/genética , ARN Interferente Pequeño/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
8.
Theranostics ; 12(8): 3911-3927, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664077

RESUMEN

Rationale: Synergistic treatment strategies for two or more drugs have gradually developed as the main options in clinics for cholangiocarcinoma (CCA) owing to the complicated crosstalk between the tumor and stroma. However, the different synergetic mechanisms pose great challenges to the dosages and order of administration of drugs. Thus, a strategy for exploring and intervening in mutual targets derived from stromal cells and cholangiocarcinoma cells was proposed. Methods: Genes with overexpression patterns in tumors and displaying a significant association with overall survival were identified from RNA-seq data of human CCA patients and CCA mouse models. Western blotting, qRT-PCR, immunofluorescence (IF), colony formation and flow cytometry assays were conducted to determine the biological roles of the key oncogene in cholangiocarcinoma and stromal cells respectively. Additionally, a dual-targeting drug delivery system (AA-HA-ODA) for cancer-associated fibroblasts (CAFs) and tumor cells was constructed to verify the effectiveness of intervening the screened genes in vivo. Results: Polo-like kinase 1 (PLK1) was verified to play vital role in the malignant proliferation of CCA by regulating the cell cycle pathway. PLK1 also decreased stromal production by regulating the CAF phenotype. In addition, a PLK1 inhibitor (Ro3280) loaded dual-targeting drug delivery system (AA-HA-ODA) was prepared and exhibited high affinity for CAFs and cholangiocarcinoma cells. The in vivo distribution pattern and antitumor efficacy of AA-HA-ODA/Ro also verify the effectiveness of inhibiting PLK1 in CCA in vivo. Conclusion: In summary, PLK1 is a mutual target derived from tumor cells and stroma due to its crucial role in the proliferation of tumor cells and stroma regulation in CAFs, which might provide enlightenment for multitarget treatment strategies and guidance for clinical cholangiocarcinoma treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Animales , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Fibroblastos Asociados al Cáncer/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/metabolismo , Humanos , Ratones , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Quinasa Tipo Polo 1
9.
Cell Death Discov ; 8(1): 169, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383155

RESUMEN

Triple negative breast cancer (TNBC) is a type of breast cancer with poor prognosis, and has no ideal therapeutic target and ideal medicine. Downregulation of JWA is closely related to the poor overall survival in many cancers including TNBC. In this study, we reported at the first time that JWA gene activating compound 1 (JAC1) inhibited the proliferation of TNBC in vitro and in vivo experimental models. JAC1 specifically bound to YY1 and eliminated its transcriptional inhibition of JWA gene. The rescued JWA induced G1 phase arrest and apoptosis in TNBC cells through the p38 MAPK signaling pathway. JAC1 also promoted ubiquitination and degradation of YY1. In addition, JAC1 disrupted the interaction between YY1 and HSF1, and suppressed the oncogenic role of HSF1 in TNBC through p-Akt signaling pathway. In conclusion, JAC1 suppressed the proliferation of TNBC through the JWA/P38 MAPK signaling and YY1/HSF1/p-Akt signaling. JAC1 maybe a potential therapeutic agent for TNBC.

10.
J Cancer ; 12(7): 1894-1906, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33753987

RESUMEN

Background: Cisplatin (DDP) is a highly effective chemotherapeutic agent to most solid tumors including gastric cancer (GC), however, its clinical value is limited due to severe toxic side effects and secondary drug resistance. JP3, a JWA protein based MMP2-targeted polypeptide, known to inhibit the growth of GC in vivo. However, the bidirectional effects of JP3 in DDP-resistant GC and normal cells have not been demonstrated. The present study aims to investigate the actions of JP3 on protecting normal cells from the toxicity of DDP while enhancing its anti-tumor effects on GC cells. Methods: Routine laboratory experimental methods including CCK-8 assay, Western blotting, Hoechst staining, immunofluorescence (IF) and qRT-PCR were used in mechanism investigation; protein docking analysis and coimmunoprecipitation (Co-IP) were used for prediction and confirmation of interactions between JP3 and CK2. Mouse xenograft model was used for screening the treatment of JP3 plus DDP on GC growth. Results: DDP showed similar toxicities to normal cells and DDP-resistant GC cells; JP3 competitively inhibited the binding of XRCC1 to CK2, reduced the DNA repair and anti-apoptosis capacity of DDP-resistant GC cells in combination with DDP treatment; meanwhile, JP3 protected normal cells from DDP-induced oxidative stress and DNA damage through ERK/Nrf2 signaling. JP3 combined with DDP showed similar bidirectional effects in vivo. Conclusions: JP3 enhanced the inhibitory effects of DDP on tumor growth while reduced toxic side effects of DDP on normal cells. The results of this study provide a new insight for the treatment of drug-resistant GC.

11.
Zool Res ; 42(2): 170-181, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33738989

RESUMEN

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly worldwide with high rates of transmission and substantial mortality. To date, however, no effective treatments or enough vaccines for COVID-19 are available. The roles of angiotensin converting enzyme 2 (ACE2) and spike protein in the treatment of COVID-19 are major areas of research. In this study, we explored the potential of ACE2 and spike protein as targets for the development of antiviral agents against SARS-CoV-2. We analyzed clinical data, genetic data, and receptor binding capability. Clinical data revealed that COVID-19 patients with comorbidities related to an abnormal renin-angiotensin system exhibited more early symptoms and poorer prognoses. However, the relationship between ACE2 expression and COVID-19 progression is still not clear. Furthermore, if ACE2 is not a good targetable protein, it would not be applicable across a wide range of populations. The spike-S1 receptor-binding domain that interacts with ACE2 showed various amino acid mutations based on sequence analysis. We identified two spike-S1 point mutations (V354F and V470A) by receptor-ligand docking and binding enzyme-linked immunosorbent assays. These variants enhanced the binding of the spike protein to ACE2 receptors and were potentially associated with increased infectivity. Importantly, the number of patients infected with the V354F and V470A mutants has increased with the development of the SARS-CoV-2 pandemic. These results suggest that ACE2 and spike-S1 are likely not ideal targets for the design of peptide drugs to treat COVID-19 in different populations.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/enzimología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Alelos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/terapia , COVID-19/virología , Humanos , Mutación Puntual , Unión Proteica , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Biomed Res Int ; 2020: 8838676, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33299884

RESUMEN

Obesity is directly associated with the risk of cancer in different organs, including breast, colon, and kidney. However, adipocytes could be utilized to control progression for some types of cancer, such as leukemia and breast cancer. To explore the potential correlation between adipocytes and cancer, the combined effect of expression levels of obesity-related genes and clinical factors (i.e., gender, race, menopausal status, history of smoking, tumor grade, body mass index (BMI), and history of drinking) on cancer survival rate was systemically studied. The expression levels of obesity-related genes in cancer tissues and normal tissues were downloaded from The Cancer Genome Atlas (TCGA). Kaplan-Meier curves were plotted using R programming language. The log-rank test was applied to explore the correlation between different clinical subgroups. The overexpression of the nine obesity-related genes (MC4R, TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2, FTO, PCSK1, and GPR120) may associate with tumor-promoting factors in some organs (head and neck, gastrointestinal tract, liver, and gallbladder). Underexpressed LEPR, NEGR1, TMEM18, and SH2B1 genes prevented the progression and metastasis of kidney cancer. The combined effect of clinical factors and the expression levels of obesity-related genes on patients' survival was found to be significant. Our outcomes suggested that the alternations of DNA methylation patterns could result in the changes of expression levels of obesity-related genes, playing a critical role in tumor progression. The results of the current study may be utilized to supplement precision and personalized medicine, as well as provide novel insights for the development of treatment approaches for cancer.


Asunto(s)
Regulación de la Expresión Génica , Neoplasias/genética , Neoplasias/mortalidad , Obesidad/genética , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Humanos , Estimación de Kaplan-Meier , Mutación/genética , Factores de Riesgo , Tasa de Supervivencia
13.
Theranostics ; 10(18): 8036-8050, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32724456

RESUMEN

Background: JWA gene is known to down-regulate SP1 and reduces the expression level of Integrin αvß3. Here, we identified a functional polypeptide (JP1) based on the active fragment of the JWA protein to suppress melanoma growth and metastasis by inhibiting the Integrin αvß3. Methods: We conducted a series of melanoma growth and metastasis mouse models to evaluate anti-melanoma effect of JP1 peptide. 18F-labeled JP1 (18F-NFP-JP1) was detected by Micro-PET assay to demonstrate drug biodistribution. Toxicity test in cynomolgus monkeys and pharmacokinetic studies in rats were done to assess the druggability. The expression of MEK1/2, NEDD4L, SP1 and Integrin αvß3 were detected in vitro and vivo models. Results: The peptide JP1 with the best anticancer effect was obtained. Micro-PET assay showed that JP1 specifically targeting to melanoma cells in vivo. JP1 inhibited melanoma growth, metastasis, and prolonged the survival of mouse. JP1 reduced the dosage and toxicity in combination with DTIC in melanoma xenograft and allograft mouse models. Cynomolgus monkey toxicity test showed no observed adverse effect level (NOAEL) of JP1 was 150 mg/kg. Mechanistically, JP1 was shown to activate p-MEK1/2 and triggered SP1 ubiquitination in melanoma cells. NEDD4L, an E3 ubiquitin ligase, was activated by p-MEK1/2 and to ubiquitinate SP1 at K685 site, resulting in subsequent degradation. Conclusions: JP1 was developed as a novel peptide that indicated therapeutic roles on proliferation and metastasis of melanoma through the NEDD4L-SP1-Integrin αvß3 signaling.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Péptidos/administración & dosificación , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Proteínas de Choque Térmico/genética , Humanos , Integrina alfaVbeta3/metabolismo , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Macaca fascicularis , Masculino , Melanoma/secundario , Proteínas de Transporte de Membrana/genética , Ratones , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Péptidos/genética , Péptidos/farmacocinética , Neoplasias Cutáneas/patología , Factor de Transcripción Sp1/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Exp Clin Cancer Res ; 39(1): 118, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576271

RESUMEN

BACKGROUND: Gastric cancer (GC) is the most prevalent gastrointestinal tumor with an unfavorable clinical prognosis. GC patients are largely threatened owing to metastasis and drug resistance. Tumor angiogenesis plays an important role in the development of gastric cancer and is a challenge in the treatment of gastric cancer. METHODS: Mouse xenograft models were used for screening of therapeutic peptides on GC growth and metastasis. Routine laboratory experimental methods including conditional cell culture, tube formation assay, qRT-PCR, Western blotting, immunohistochemistry (IHC), ubiquitination assay, and immunofluorescence (IF) were used in mechanism investigation; protein docking analysis and coimmunoprecipitation (Co-IP) were used for prediction and confirmation of interactions between JP3/SP1 and TRIM25/MEK1/2. RESULTS: We identified an MMP2-targeted peptide JP3 that plays inhibiting roles in modulating growth and metastasis of GC in vivo and has no observable toxic side effects. JP3 reduced tumor microvessel density (MVD) in vivo and human umbilical vein endothelial cells (HUVECs) tube formation in vitro. Mechanistic studies revealed that JP3 reduces polyubiquitination-mediated degradation of TRIM25 by increasing the stability of TRIM25 through phosphorylating it at Ser12. TRIM25, as an E3 ubiquitin ligase, promoted the ubiquitin of SP1 at K610, further suppressed expression of MMP2 and inhibited angiogenesis in GC. Importantly, the inversely association between TRIM25 and SP1 protein level was further verified in human GC tissues. Decreased TRIM25 expression and increased SP1 expression in tumor tissues were positively correlated with poor prognosis of GC patients. CONCLUSIONS: MMP2-targeted peptide JP3 plays a therapeutic role in GC through anti-angiogenesis by modulating TRIM25/SP1/MMP2.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Factor de Transcripción Sp1/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Neovascularización Patológica/patología , Factor de Transcripción Sp1/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Genomics ; 112(5): 3427-3434, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574834

RESUMEN

Transcription factors (TFs) cooperatively bind to specific DNA sequences to control chromatin and gene transcription in eukaryotes. Here, we searched canonical binding, co-binding and tethered binding regions of a TF within ChIP-seq peaks, and investigated the effect of TF-TF cooperation in human GM12878 and K562 cells. We found that TFs except for CTCF and SPI1 showed a large proportion of co-binding and tethered binding regions, and TFs frequently co-binding with other TFs would also frequently tether other TFs to their binding positions. We further observed lower in vivo nucleosome occupancy, higher in vitro nucleosome occupancy and higher levels of H2A.Z, H3K27ac, H3K9ac, H3K4me1, H3K4me2 and H3K4me3 within distal co-binding regions where other TFs were recruited. In addition, target genes for proximal co-binding regions where other TFs were recruited showed significantly higher expression levels. These results indicated that TF-TF cooperation directly associates with the chromatin structure and gene transcription.


Asunto(s)
Genoma Humano , Factores de Transcripción/metabolismo , Sitios de Unión , Cromatina/química , Secuenciación de Inmunoprecipitación de Cromatina , Humanos , Unión Proteica , Transcripción Genética
16.
Proteins ; 88(1): 196-205, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31344265

RESUMEN

Shewanella oneidensis MR-1 shows remarkable respiratory versatility with a large variety of extracellular electron acceptors (termed extracellular electron transfer, EET). To utilize the various electron acceptors, the bacterium must employ complex regulatory mechanisms to elicit the relevant EET pathways. To investigate the relevant mechanisms, we integrated EET genes and related transcriptional factors (TFs) into transcriptional regulatory modules (TRMs) and showed that many bridge proteins in these modules were signal proteins, which generally contained one or more signal processing domains (eg, GGDEF, EAL, PAS, etc.). Since Shewanella has to respond to diverse environmental conditions despite encoding few EET-relevant TFs, the overabundant signal proteins involved in the TRMs can help decipher the mechanism by which these microbes elicit a wide range of condition-specific responses. By combining proteomic data and protein bioinformatic analysis, we demonstrated that diverse signal proteins reconciled the different EET pathways, and we discussed the functional roles of signal proteins involved in the well-known MtrCAB pathway. Additionally, we showed that the signal proteins SO_2145 and SO_1417 played central roles in triggering EET pathways in anaerobic environments. Taken together, our results suggest that signal proteins have a profound impact on the transcriptional regulation of EET genes and thus have potential applications in microbial fuel cells.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Shewanella/genética , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , Transporte de Electrón , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Shewanella/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Activación Transcripcional
17.
J Nanosci Nanotechnol ; 20(1): 64-80, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31383140

RESUMEN

The conductivity of Geobacter sulfurreducens is attributed mainly to its truncated pili, known as microbial nanowires. In this study, we explored the biological factors that limit electron transfer and hence the conductivity of pili, including the types of aromatic residue, distances between aromatic residues, local electrostatic environment around aromatic residues, and percentage of aromatic residues in the pilin subunits that form the pili, as well as the physico-chemical interactions in the pili, by comparing the structures of pili with different conductivities in electricigens. Structures of the Geobacter pili and their mutants were constructed using the symmetric docking module of the Rosetta software. Potential electron transfer pathways in the pili were identified based on Dijkstra's shortest pathway algorithm. We found that the conductivity of full-length pili could be increased when the hydrophobic C-terminal spheres of pilin proteins are truncated. The mutant pili with altered aromatic residues probably have higher conductivity than wild-type, when the interactions between the α-N domains of pilins are enhanced. A larger percentage of aromatic residues in the N-termini of the pilin subunits resulted in higher conductivity of the corresponding pili. These results provide new insights about strategies for synthesizing high electrically conductive nanowires.


Asunto(s)
Geobacter , Nanocables , Conductividad Eléctrica , Transporte de Electrón , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Geobacter/genética , Geobacter/metabolismo
18.
Biomed Res Int ; 2019: 6151587, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886232

RESUMEN

Microorganisms can transfer electrons directly to extracellular acceptors, during which organic compounds are oxidized to carbon dioxide. One of these microbes, Geobacter sulfurreducens, is well known for the "metallic-like" conductivity of its type IV pili. However, there is no consensus on what the mechanism for electron transfer along these conductive pili is. Based on the aromatic distances and orientations of our predicted models, the mechanism of electron transfer in the Geobacter sulfurreducens (GS) pili was explored by quantum chemical calculations with Marcus theory of electron transfer reactions. Three aromatic residues from the N-terminal α-helix of the GS pilin subunit are packed together, resulting in a continuous pi-pi interaction chain. The theoretical conductance (4.69 µS/3.85 µS) of the predicted models is very similar to that in the experiments reported recently (3.40 µS). These findings offer a new concept that the GS pili belongs to a new class of proteins that can transport electrons through pi-pi interaction between aromatic residues and also provide a valuable tool for guiding further researches of these conductive pili, to investigate their roles in biogeochemical cycling, and potential applications in biomaterials, bioelectronics, and bioenergy.


Asunto(s)
Aminoácidos Aromáticos , Transporte de Electrón/fisiología , Espacio Extracelular , Fimbrias Bacterianas , Geobacter , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Conductividad Eléctrica , Espacio Extracelular/química , Espacio Extracelular/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Geobacter/química , Geobacter/citología , Geobacter/metabolismo , Simulación de Dinámica Molecular
19.
PLoS Biol ; 17(3): e3000175, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30840614

RESUMEN

G protein-coupled receptors (GPCRs) play an important role in physiology and disease and represent the most productive drug targets. Orphan GPCRs, with their endogenous ligands unknown, were considered a source of drug targets and consequently attract great interest to identify their endogenous cognate ligands for deorphanization. However, a contrary view to the ubiquitous existence of endogenous ligands for every GPCR is that there might be a significant overlooked fraction of orphan GPCRs that function constitutively in a ligand-independent manner only. Here, we investigated the evolution of the bombesin receptor-ligand family in vertebrates in which one member-bombesin receptor subtype-3 (BRS3)-is a potential orphan GPCR. With analysis of 17 vertebrate BRS3 structures and 10 vertebrate BRS3 functional data, our results demonstrated that nonplacental vertebrate BRS3 still connects to the original ligands-neuromedin B (NMB) and gastrin-releasing peptide (GRP)-because of adaptive evolution, with significantly changed protein structure, especially in three altered key residues (Q127R, P205S, and R294H) originally involved in ligand binding/activation, whereas the placental mammalian BRS3 lost the binding affinity to NMB/GRP and constitutively activates Gs/Gq/G12 signaling in a ligand-independent manner. Moreover, the N terminus of placental mammalian BRS3 underwent positive selection, exhibiting significant structural differences compared to nonplacental vertebrate BRS3, and this domain plays an important role in constitutive activity of placental mammalian BRS3. In conclusion, constitutively active BRS3 is a genuinely orphan GPCR in placental mammals, including human. To our knowledge, this study identified the first example that might represent a new group of genuinely orphan GPCRs that will never be deorphanized by the discovery of a natural ligand and provided new perspectives in addition to the current ligand-driven GPCR deorphanization.


Asunto(s)
Receptores de Bombesina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/metabolismo , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación/genética , Neuroquinina B/análogos & derivados , Neuroquinina B/genética , Neuroquinina B/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Filogenia , Receptores de Bombesina/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
Oncol Rep ; 40(3): 1359-1369, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29956810

RESUMEN

Cancer represents a significant challenge for humankind, as early diagnosis and treatment are difficult to achieve. To systemically investigate the effect of sex, body mass index (BMI) and age on cancer incidence and prognosis, the data from 14,504 cases of cancer were downloaded from The Cancer Genome Atlas (TCGA). BMI was used to categorize each person as underweight, normal weight, overweight or obese. Two­ and five­year survival rates were applied to estimate the prognosis for each cancer type. All data were statistically analyzed. We identified that males were more susceptible to lung, liver and skin cancer when compared with females, whereas females were more susceptible to thyroid, breast and adrenal cortex cancer. High BMI (>25) was positively associated with the occurrence of cancer, although patients with high BMI at the time of initial diagnosis had higher two/five­year survival rates. The survival rates for cancer were positively correlated with the age at initial pathologic diagnosis. Some types of cancer were associated with particularly young ages of onset, including adrenocortical carcinoma, cervical and endocervical cancers, brain lower grade glioma, pheochromocytoma and paraganglioma, testicular germ cell tumors and thyroid carcinoma. Hence, the early diagnosis and prognosis for these cancers need to be improved. In conclusion, sex, BMI and age are associated with the incidence and survival rates for cancers. These results could be used to supplement precision and personalized medicine.


Asunto(s)
Índice de Masa Corporal , Neoplasias/epidemiología , Neoplasias/patología , Obesidad/fisiopatología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , China/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Pronóstico , Factores Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...