Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Front Pharmacol ; 15: 1366417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855754

RESUMEN

The in-vivo non-human primate animal and in-vitro cell disease models play a crucial part in the study of the mechanisms underlying the occurrence and development of pancreatic diseases, but with increasingly prominent limitations with in-depth research. Organoids derived from human pluripotent and adult stem cells resemble human in-vivo organs in their cellular composition, spatial tissue structure and physiological function, making them as an advantageous research tool. Up until now, numerous human organoids, including pancreas, have been effectively developed, demonstrating significant potential for research in organ development, disease modeling, drug screening, and regenerative medicine. However, different from intestine, liver and other organs, the pancreas is the only special organ in the human body, consisting of an exocrine gland and an endocrine gland. Thus, the development of pancreatic organoid technology faces greater challenges, and how to construct a composite pancreatic organoid with exocrine and endocrine gland is still difficult in current research. By reviewing the fundamental architecture and physiological role of the human pancreas, along with the swiftly developing domain of pancreatic organoids, we summarize the method and characteristics of human pancreatic organoids, and its application in modeling pancreatic diseases, as a platform for individualized drug screening and in regenerative medicine study. As the first comprehensive review that focus on the pharmacological study of human pancreatic organoid, the review hopes to help scholars to have a deeper understanding in the study of pancreatic organoid.

2.
ACS Appl Mater Interfaces ; 16(20): 25665-25675, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38735053

RESUMEN

Tumor-associated macrophages (TAMs) usually adopt a tumor-promoting M2-like phenotype, which largely impedes the immune response and therapeutic efficacy of solid tumors. Repolarizing TAMs from M2 to the antitumor M1 phenotype is crucial for reshaping the tumor immunosuppressive microenvironment (TIME). Herein, we developed self-assembled nanoparticles from the polymeric prodrug of resiquimod (R848) to reprogram the TIME for robust cancer immunotherapy. The polymeric prodrug was constructed by conjugating the R848 derivative to terminal amino groups of the linear dendritic polymer composed of linear poly(ethylene glycol) and lysine dendrimer. The amphiphilic prodrug self-assembled into nanoparticles (PLRS) of around 35 nm with a spherical morphology. PLRS nanoparticles could be internalized by antigen-presenting cells (APCs) in vitro and thus efficiently repolarized macrophages from M2 to M1 and facilitated the maturation of APCs. In addition, PLRS significantly inhibited tumor growth in the 4T1 orthotopic breast cancer model with much lower systemic side effects. Mechanistic studies suggested that PLRS significantly stimulated the TIME by repolarizing TAMs into the M1 phenotype and increased the infiltration of cytotoxic T cells into the tumor. This study provides an effective polymeric prodrug-based strategy to improve the therapeutic efficacy of R848 in cancer immunotherapy.


Asunto(s)
Imidazoles , Inmunoterapia , Nanopartículas , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/uso terapéutico , Animales , Ratones , Imidazoles/química , Imidazoles/farmacología , Nanopartículas/química , Femenino , Ratones Endogámicos BALB C , Línea Celular Tumoral , Humanos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Antineoplásicos/química , Antineoplásicos/farmacología , Células RAW 264.7 , Polietilenglicoles/química , Microambiente Tumoral/efectos de los fármacos , Dendrímeros/química , Dendrímeros/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo
3.
Curr Med Imaging ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38529653

RESUMEN

OBJECTIVE: This study aimed to investigate whether there is a correlation between quantitative parameters of dual-energy computed tomography (DECT) and the relative expression of HIF-1α in patients with non-small cell lung cancer (NSCLC) to preliminarily explore the value of DECT in evaluating the hypoxia of tumor microenvironment and tumor biological behavior and provide more information for the treatment of NSCLC. METHODS: This retrospective research included 36 patients with pathologically confirmed NSCLC who underwent dual-energy enhanced CT scans. The quantitative parameters of DECT were analyzed, including iodine concentration, water concentration, the CT values corresponding to 40keV, 70keV, 100keV, and 130keV in arterial and venous phases, and the normalized iodine concentration and the slope of the energy spectrum curve were calculated. Postoperative specimens underwent HIF immunohistochemical staining by two pathologists. Spearman correlation analysis was adopted as the statistical methodology. The data were analyzed by SPSS26.0 statistical software. RESULTS: Water concentration (r=0.659, P<0.001 and r= 0.632, P<0.001, the CT values corresponding to 100keV (r=0.645, P<0.001 and r= 0.566, P<0.001) and 130keV (r=0.687, P<0.001 and r= 0.682, P<0.001) in arterial and venous phases, and CT value of 70keV in arterial phase (r=0.457, P=0.005) were positively correlated with HIF-1α expression level. There was no correlation among iodine concentration, standardized iodine concentration, CT value of 40keV, λHU, and HIF-1α expression in arterial and venous levels (P >0.05). CONCLUSION: The quantitative parameters of DECT have a certain correlation with HIF-1α expression in NSCLC. Moreover, it has been demonstrated that DECT can be used to predict hypoxia in tumor tissues and the prognosis of lung cancer patients.

5.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462771

RESUMEN

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Asunto(s)
Mieloma Múltiple , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Peroxidación de Lípido , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico
6.
Int J Ophthalmol ; 17(2): 228-238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371266

RESUMEN

AIM: To observe the effects of N-acetylserotonin (NAS) administration on retinal ischemia-reperfusion (RIR) injury in rats and explore the underlying mechanisms involving the high mobility group box 1 (HMGB1)/receptor for advanced glycation end-products (RAGE)/nuclear factor-kappa B (NF-κB) signaling pathway. METHODS: A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye. Eighty male Sprague Dawley were randomly divided into five groups: sham group (n=8), RIR group (n=28), RIR+NAS group (n=28), RIR+FPS-ZM1 group (n=8) and RIR+NAS+ FPS-ZM1 group (n=8). The therapeutic effects of NAS were examined by hematoxylin-eosin (H&E) staining, and retinal ganglion cells (RGCs) counting. The expression of interleukin 1 beta (IL-1ß), HMGB1, RAGE, and nod-like receptor 3 (NLRP3) proteins and the phosphorylation of nuclear factor-kappa B (p-NF-κB) were analyzed by immunohistochemistry staining and Western blot analysis. The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats. With NAS therapy, the HMGB1 and RAGE expression decreased significantly, and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression. Additionally, NAS exhibited an anti-inflammatory effect by reducing IL-1ß expression. The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression, so as to the IL-1ß expression and retinal edema, accompanied by an increase of RGCs in RIR rats. CONCLUSION: NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway, which may be a useful therapeutic target for retinal disease.

7.
Stroke Vasc Neurol ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286483

RESUMEN

The use of biologics in various diseases has dramatically increased in recent years. Stroke, a cerebrovascular disease, is the second most common cause of death, and the leading cause of disability with high morbidity worldwide. For biologics applied in the treatment of acute ischaemic stroke, alteplase is the only thrombolytic agent. Meanwhile, current clinical trials show that two recombinant proteins, tenecteplase and non-immunogenic staphylokinase, are most promising as new thrombolytic agents for acute ischaemic stroke therapy. In addition, stem cell-based therapy, which uses stem cells or organoids for stroke treatment, has shown promising results in preclinical and early clinical studies. These strategies for acute ischaemic stroke mainly rely on the unique properties of undifferentiated cells to facilitate tissue repair and regeneration. However, there is a still considerable journey ahead before these approaches become routine clinical use. This includes optimising cell delivery methods, determining the ideal cell type and dosage, and addressing long-term safety concerns. This review introduces the current or promising recombinant proteins for thrombolysis therapy in ischaemic stroke and highlights the promise and challenges of stem cells and cerebral organoids in stroke therapy.

8.
Clin Lab ; 70(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38213211

RESUMEN

BACKGROUND: A fetus with increased copy number of chromosome 20 was identified by NIPT. Here we utilize several genetic tests and analyses to illuminate the etiology of such aneuploidy. METHODS: Amniotic fluid cells were extracted from pregnant woman and sent for karyotype and chromosomal microarray analysis (CMA). Trio pedigree analysis was conducted with Chromosome Analysis Suite and uniparental disomy (UPD)-tool software. RESULTS: CMA identified consistent results, which were 2 regions of homozygosity: arr[GRCh37]20p12.2q11.1 (11265096_26266313)hmz and arr[GRCh37]20q11.21q13.2(29510306_54430467)hmz. The trio pedigree analysis discovered that the fetal chromosome 20 was the entire maternal UPD mosaic with isodisomy and heterodisomy. CONCLUSIONS: When a large segment of chromosome is homozygous, appropriate genetic tests are required to find the potential mechanisms for UPD formation.


Asunto(s)
Cromosomas Humanos Par 20 , Disomía Uniparental , Embarazo , Femenino , Humanos , Disomía Uniparental/genética , Cromosomas Humanos Par 20/genética , Diagnóstico Prenatal/métodos , Cariotipificación , Feto
10.
Angew Chem Int Ed Engl ; 62(51): e202314510, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37926915

RESUMEN

The phosphate-coordination triple helicates A2 L3 (A=anion) with azobenzene-spaced bis-bis(urea) ligands (L) have proven to undergo a rare in situ photoisomerization (without disassembly of the structure) rather than the typically known, stepwise "disassembly-isomerization-reassembly" process. This is enabled by the structural self-adaptability of the "aniono" assembly arising from multiple relatively weak and flexible hydrogen bonds between the phosphate anion and bis(urea) units. Notably, the Z→E thermal relaxation rate of the isomerized azobenzene unit is significantly decreased (up to 20-fold) for the triple helicates compared to the free ligands. Moreover, the binding of chiral guest cations inside the cavity of the Z-isomerized triple helicate can induce optically pure diastereomers, thus demonstrating a new strategy for making light-activated chiroptical materials.

11.
Exploration (Beijing) ; 3(3): 20220005, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37933377

RESUMEN

The unclear structures and polydispersity of metal nanoparticles (NPs) seriously hamper the identification of the active sites and the construction of structure-reactivity relationships. Fortunately, ligand-protected metal nanoclusters (NCs) with atomically precise structures and monodispersity have become an ideal candidate for understanding the well-defined correlations between structure and catalytic property at an atomic level. The programmable kernel structures of atomically precise metal NCs provide a fantastic chance to modulate their size, shape, atomic arrangement, and electron state by the precise modulating of the number, type, and location of metal atoms. Thus, the special focus of this review highlights the most recent process in tailoring the catalytic activity and selectivity over metal NCs by precisely controlling their kernel structures. This review is expected to shed light on the in-depth understanding of metal NCs' kernel structures and reactivity relationships.

12.
Phys Chem Chem Phys ; 25(47): 32666-32674, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38010916

RESUMEN

A series of novel [Ir(tpy)(btp)Cl]+ complexes (Ir1-Ir4) have been reported to show excellent performance as photosensitizers. The introduction of electron-withdrawing groups increases visible light absorption and the lifetime of triplet states. To improve the photophysical properties, we theoretically design Ir5-Ir9 with electron-withdrawing groups (Cl, F, COOH, CN and NO2). Surprisingly, our findings indicate that the photosensitizer performance does not strictly increase with the electron-withdrawing ability of the substituents. In this work, the geometric and electronic structures, transition features, and photophysical properties of Ir1-Ir9 are investigated. The natural transition orbital (NTO) analysis indicates that the T1 and T2 states play a role in the photochemical pathways. Ultraviolet-visible (UV-vis) absorption spectra and charge-transfer spectra (CTS) have been investigated to show that the introduction of electron-withdrawing groups not only improves the visible light absorbing ability, but also changes the nature of electron excitation, providing a future molecular design strategy for similar series of photosensitizers. The rates of (reverse) intersystem crossing and the Huang-Rhys factors are evaluated to interpret the experimental results within the framework of Marcus theory. For complexes Ir1-Ir7, the introduction of electron-withdrawing groups leads to a lower efficiency of reverse intersystem crossing and a strong non-radiative process T2 → T1, resulting in a long triplet lifetime and excellent performance as a photosensitizer. Furthermore, some newly designed complexes (Ir7-Ir9) show great potential as thermally activated delayed fluorescence emitters, contrary to our initial expectations.

13.
Int J Med Sci ; 20(11): 1448-1459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790849

RESUMEN

TJP1, an adaptor protein of the adhesive barrier, has been found to exhibit distinct oncogenic or tumor suppressor functions in a cell-type dependent manner. However, the role of TJP1 in kidney renal clear cell carcinoma (KIRC) remains to be explored. The results showed a marked down-regulation of TJP1 in KIRC tissues compared to normal tissues. Low expression of TJP1 was significantly associated with high grade and poor prognosis in KIRC. Autophagosome aggregation and LC3 II conversion demonstrated that TJP1 may induce autophagy signaling in 786-O and OS-RC-2 cells. Knockdown of TJP1 led to a decrease in the expression of autophagy-related genes, such as BECN1, ATG3, and ATG7. Consistently, TJP1 expression showed a significant positive correlation with these autophagy-related genes in KIRC patients. Furthermore, the overall survival analysis of KIRC patients based on the expression of autophagy-related genes revealed that most of these genes were associated with a good prognosis. TJP1 overexpression significantly suppressed cell proliferation and tumor growth in 786-O cells, whereas the addition of an autophagy inhibitor diminished its inhibitory function. Taken together, these results suggest that TJP1 serves as a favorable prognostic marker and induces autophagy to suppress cell proliferation and tumor growth in KIRC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proteína de la Zonula Occludens-1 , Autofagia/genética , Carcinoma de Células Renales/genética , Proliferación Celular/genética , Neoplasias Renales/genética , Riñón , Pronóstico
14.
World Neurosurg ; 180: e774-e785, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839573

RESUMEN

BACKGROUND: Cardiac complications are related to poor prognosis after spontaneous intracerebral hemorrhage (ICH). This study aims to predict the cardiac complications arising from small intracranial hematoma at ultraearly stage. METHODS: The data of this work were derived from the Risk Stratification and Minimally Invasive Surgery in Acute ICH Patients study (ClinicalTrials.gov Identifier: NCT03862729). This work included patients with ICH but without brain herniation, as confirmed by a brain computed tomography scan within 48 hours of symptom onset. Every Patient's information recorded at the emergent department, including clinical, laboratory, electrocardiogram, and medical records, was derived from the electronic data capture. Cardiac complications were defined as the occurrence of myocardial damage, arrhythmias, and ischemic electrocardiogram changes during hospitalization. Variables associated with cardiac complications were filtrated by univariate and multivariate regression analyses. Independent risk factors were used to form the early predictive model. The restricted cubic splines were employed to investigate the nonlinear associations in a more sophisticated and scholarly manner. RESULTS: A total of 587 ICH patients were enrolled in this work, including 72 patients who suffered from cardiac complications after ICH. Out of the 78 variables, 24 were found to be statistically significant in the univariate logistic regression analysis. These significant variables were then subjected to multivariate logistic regression analysis and utilized for constructing risk models. Multivariate logistic regression analysis showed high plasma fibrinogen (FIB) level [odds ratio (OR) per standard deviation (SD) 1.327, 95% confidence intervals (CI) 1.037-1.697; P = 0. 024)] and older age (OR per SD 1.777, 95% CI 1.344-2.349; P <0.001) were associated with a higher incidence of cardiac complications after ICH. High admission pulse rate (OR 0.620, 95% CI 0.451-0.853; P = 0. 003) was considered a protective factor for cardiac complications after ICH. In the restricted cubic spline regression model, FIB and cardiac complications following ICH were positively correlated and almost linearly (P for nonlinearity = 0.073). The reference point for FIB in predicting cardiac complications after ICH was 2.64 g/L. CONCLUSIONS: Emergent factors, including plasma FIB level, age, and pulse rate, might be independently associated with cardiac complications after ICH, which warrants attention in the context of treatment.


Asunto(s)
Hemorragia Cerebral , Cardiopatías , Humanos , Hemorragia Cerebral/complicaciones , Factores de Riesgo , Hematoma/etiología , Hematoma/complicaciones , Incidencia , Cardiopatías/etiología , Cardiopatías/complicaciones , Fibrinógeno
15.
Chem Commun (Camb) ; 59(59): 9118-9121, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37403984

RESUMEN

A metal-organic cage (MOC)-based porous salt composed of cationic Zr-MOC and anionic Cu-MOC was incorporated into SBA-15 nanopores via a two-step impregnation method for the first time. The encapsulated MOC-based porous salt showed improved iodine adsorption capacity when compared with the bulk sample.

16.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(6): 645-652, 2023 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-37382136

RESUMEN

OBJECTIVES: To study the protective effect of melatonin (Mel) against oxygen-induced retinopathy (OIR) in neonatal mice and the role of the HMGB1/NF-κB/NLRP3 axis. METHODS: Neonatal C57BL/6J mice, aged 7 days, were randomly divided into a control group, a model group (OIR group), and a Mel treatment group (OIR+Mel group), with 9 mice in each group. The hyperoxia induction method was used to establish a model of OIR. Hematoxylin and eosin staining and retinal flat-mount preparation were used to observe retinal structure and neovascularization. Immunofluorescent staining was used to measure the expression of proteins and inflammatory factors associated with the HMGB1/NF-κB/NLRP3 axis and lymphocyte antigen 6G. Colorimetry was used to measure the activity of myeloperoxidase. RESULTS: The OIR group had destruction of retinal structure with a large perfusion-free area and neovascularization, while the OIR+Mel group had improvement in destruction of retinal structure with reductions in neovascularization and perfusion-free area. Compared with the control group, the OIR group had significant increases in the expression of proteins and inflammatory factors associated with the HMGB1/NF-κB/NLRP3 axis, the expression of lymphocyte antigen 6G, and the activity of myeloperoxidase (P<0.05). Compared with the OIR group, the OIR+Mel group had significant reductions in the above indices (P<0.05). Compared with the control group, the OIR group had significant reductions in the expression of melatonin receptors in the retina (P<0.05). Compared with the OIR group, the OIR+Mel group had significant increases in the expression of melatonin receptors (P<0.05). CONCLUSIONS: Mel can alleviate OIR-induced retinal damage in neonatal mice by inhibiting the HMGB1/NF-κB/NLRP3 axis and may exert an effect through the melatonin receptor pathway.


Asunto(s)
Proteína HMGB1 , Melatonina , Enfermedades de la Retina , Animales , Ratones , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones Endogámicos C57BL , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Oxígeno/efectos adversos , Peroxidasa , Receptores de Melatonina , Enfermedades de la Retina/inducido químicamente , Enfermedades de la Retina/tratamiento farmacológico
17.
BMC Palliat Care ; 22(1): 71, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312118

RESUMEN

OBJECTIVE: To evaluate the clinical effect of a multidisciplinary collaboration team combined with a palliative care model in patients with terminal cancer. METHOD: A total of 84 patients diagnosed with terminal cancer in our hospital were included and randomly divided into an intervention group and a control group, with 42 cases in each group. Patients in the intervention group were treated by a multidisciplinary collaborative team combined with the palliative care model, and patients in the control group were treated by routine nursing intervention. The Self-rating Anxiety Scale (SAS) and the Self-rating Depression Scale (SDS) were used to evaluate negative emotions and anxiety and depression of patients before and after intervention. The Quality of Life Scale (European Organization for Research and Treatment of Cancer [EORTC] QLQ-C30) and Social Support Scale (SSRS) were used to evaluate the quality of life and social support of patients. This study has been registered in 13/01/2023 (ClinicalTrials.gov Identifier: NCT05683236). RESULT: The general data of the two groups were comparable. After intervention, the SAS (43.7 ± 7.4 vs. 54.2 ± 9.3) and SDS scores (38.4 ± 6.5 vs. 53.1 ± 8.4) of the intervention group were significantly lower than those of the control group. The total SSRS score, subjective support score, objective support score and utilisation of support of the intervention group were significantly higher than those of the control group (P < 0.05). The overall quality of life score of the intervention group was higher than that of the control group, and the difference was statistically significant (79.5 ± 4.5 vs. 73.2 ± 3.6, P < 0.05). The scores of each functional scale were significantly higher than those of the control group (P < 0.05). CONCLUSION: Compared with conventional nursing, the application of the multidisciplinary collaborative team combined with tranquilisation therapy in patients with terminal cancer can significantly reduce the anxiety and depression of patients, enable patients to obtain comprehensive social support, and effectively improve the quality of life of patients. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT05683236, 13/01/2023, Retrospectively registered.


Asunto(s)
Enfermería de Cuidados Paliativos al Final de la Vida , Neoplasias , Humanos , Cuidados Paliativos , Calidad de Vida , Proyectos de Investigación , Neoplasias/complicaciones , Neoplasias/terapia
18.
Br J Haematol ; 202(4): 840-855, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365680

RESUMEN

Multiple myeloma (MM) is the second most common haematological malignancy. Despite the development of new drugs and treatments in recent years, the therapeutic outcomes of patients are not satisfactory. It is necessary to further investigate the molecular mechanism underlying MM progression. Herein, we found that high E2F2 expression was correlated with poor overall survival and advanced clinical stages in MM patients. Gain- and loss-of-function studies showed that E2F2 inhibited cell adhesion and consequently activated cell epithelial-to-mesenchymal transition (EMT) and migration. Further experiments revealed that E2F2 interacted with the PECAM1 promoter to suppress its transcriptional activity. The E2F2-knockdown-mediated promotion of cell adhesion was significantly reversed by the repression of PECAM1 expression. Finally, we observed that silencing E2F2 significantly inhibited viability and tumour progression in MM cell models and xenograft mouse models respectively. This study demonstrates that E2F2 plays a vital role as a tumour accelerator by inhibiting PECAM1-dependent cell adhesion and accelerating MM cell proliferation. Therefore, E2F2 may serve as a potential independent prognostic marker and therapeutic target for MM.


Asunto(s)
Mieloma Múltiple , Humanos , Animales , Ratones , Mieloma Múltiple/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Adhesión Celular/genética , Línea Celular Tumoral , Regulación de la Expresión Génica , Proliferación Celular , Factor de Transcripción E2F2/genética , Factor de Transcripción E2F2/metabolismo
19.
Acta Pharmacol Sin ; 44(9): 1790-1800, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37142683

RESUMEN

Meteorin-like (Metrnl) is a novel secreted protein with various biological activities. In this study, we investigated whether and how Metrnl regulated skin wound healing in mice. Global Metrnl gene knockout mice (Metrnl-/-) and endothelial cell-specific Metrnl gene knockout mice (EC-Metrnl-/-) were generated. Eight-mm-diameter full-thickness excisional wound was made on the dorsum of each mouse. The skin wounds were photographed and analyzed. In C57BL/6 mice, we observed that Metrnl expression levels were markedly increased in skin wound tissues. We found that both global and endothelial cell-specific Metrnl gene knockout significantly retarded mouse skin wound healing, and endothelial Metrnl was the key factor affecting wound healing and angiogenesis. The proliferation, migration and tube formation ability of primary human umbilical vein endothelial cells (HUVECs) were inhibited by Metrnl knockdown, but significantly promoted by addition of recombinant Metrnl (10 ng/mL). Metrnl knockdown abolished the proliferation of endothelial cells stimulated by recombinant VEGFA (10 ng/mL) but not by recombinant bFGF (10 ng/mL). We further revealed that Metrnl deficiency impaired VEGFA downstream AKT/eNOS activation in vitro and in vivo. The damaged angiogenetic activity in Metrnl knockdown HUVECs was partly rescued by addition of AKT activator SC79 (10 µM). In conclusion, Metrnl deficiency retards skin wound healing in mice, which is related to impaired endothelial Metrnl-mediated angiogenesis. Metrnl deficiency impairs angiogenesis by inhibiting AKT/eNOS signaling pathway.


Asunto(s)
Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Movimiento Celular , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Cicatrización de Heridas
20.
Transl Oncol ; 32: 101666, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37031603

RESUMEN

Tight junction protein 1 (TJP1) is a recently identified prominent regulator of bladder cancer (BLCA) angiogenesis and tumorigenesis. Vascular mimicry (VM) is a newly described tumor feature and is correlated with an increased risk of tumor metastasis. However, the relationship between TJP1 expression and VM in bladder cancer remains elusive. In the present study, we report a novel function for TJP1 in accommodating VM to promote tumor progression. We found that the elevated TJP1 expression was positively related to VM in patients and xenograft tumor models in bladder cancer. Enforced expression of TJP1 increased VM of BLCA cells in vitro and in vivo by elevating Vascular endothelial growth factor A (VEGFA) levels. Furthermore, VM induced by TJP1 overexpression was significantly blocked by the VEGFA and VEGFR inhibitors (Bevacizumab and Sunitinib). Mechanistically, TJP1 promoted VEGFA transcriptional and protein level in a TWIST1-dependent manner. Taken together, our study reveals that TJP1-regulated VEGFA overexpression may indicate a potential therapeutic target for clinical intervention in the early tumor neovascularization of bladder cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...