Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immunol Invest ; 49(7): 744-757, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32799717

RESUMEN

Exosomes, including human melanoma-derived exosomes (HMEX), are known to suppress the function of immune effector cells, which for HMEX has been associated with the surface presence of the immune checkpoint ligand PD-L1. This study investigated the relationship between the BRAF mutational status of melanoma cells and the inhibition of secreted HMEX exosomes on antigen-specific human T cells. Exosomes were isolated from two melanoma cell lines, 2183-Her4 and 888-mel, which are genetically wild-type BRAFWT and BRAFV600E, respectively. HMEX were isolated using a modified, size-exclusion chromatography (SEC) method shown to reduce co-isolation of non-exosome-associated cytokines compared to ultracentrifugation isolation. The immunoinhibitory effect of the exosomes was tested in vitro on patient-derived NY-ESO-1-specific CD8+ T cells challenged with NY-ESO-1 antigen. HMEX from both cell lines inhibited the immune response of antigen-specific T cells comparably, as evidenced by the reduction of IFN-γ and TNF-α in NY-ESO-1 tetramer-positive cells. This inhibition could be partially reversed by the presence of anti-PD-L1 and anti-IL-10 antibodies. IL-10 has been demonstrated to be a critical pathway for sustaining enhanced tumorigenesis in BRAFV600E mutant cells compared to BRAFWT melanoma cells. Thus, we demonstrate that HMEX inhibit antigen-specific T cell responses independent of the BRAF mutational status of the parent cells. In addition, PD-L1 and IL-10 contribute to the HMEX-mediated immunosuppression of antigen-specific human T cells. The inhibitory capacity of exosomes should be taken into consideration when developing therapies that are reliant upon the potency of customized, antigen-specific effector T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Exosomas/metabolismo , Inmunomodulación/genética , Interleucina-10/metabolismo , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Alelos , Sustitución de Aminoácidos , Apoptosis , Biomarcadores de Tumor , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunomodulación/efectos de los fármacos , Interleucina-10/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
2.
Biochem Biophys Res Commun ; 461(1): 47-53, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25866182

RESUMEN

Wound healing is critical for normal development and pathological processes including cancer cell metastasis. MAPK, Rho-GTPases and NFκB are important regulators of wound healing, but mechanisms for their integration are incompletely understood. Annexin-A1 (ANXA1) is upregulated in invasive breast cancer cells resulting in constitutive activation of NFκB. We show here that silencing ANXA1 increases the formation of stress fibers and focal adhesions, which may inhibit wound healing. ANXA1 regulated wound healing is dependent on the activation of ERK1/2. ANXA1 increases the activation of RhoA, which is dependent on ERK activation. Furthermore, active RhoA is important in NF-κB activation, where constitutively active RhoA potentiates NFκB activation, while dominant negative RhoA inhibits NFκB activation in response to CXCL12 stimulation and active MEKK plasmids. These findings establish a central role for ANXA1 in the cell migration through the activation of NFκB, ERK1/2 and RhoA.


Asunto(s)
Anexina A1/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Cicatrización de Heridas/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Movimiento Celular , Femenino , Humanos , Células MCF-7 , Células Tumorales Cultivadas
3.
J Immunol ; 191(8): 4375-82, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24048896

RESUMEN

TLRs play a pivotal role in the recognition of bacteria and viruses. Members of the family recognize specific pathogen sequences to trigger both MyD88 and TRIF-dependent pathways to stimulate a plethora of cells. Aberrant activation of these pathways is known to play a critical role in the development of autoimmunity and cancer. However, how these pathways are entirely regulated is not fully understood. In these studies, we have identified Annexin-A1 (ANXA1) as a novel regulator of TLR-induced IFN-ß and CXCL10 production. We demonstrate that in the absence of ANXA1, mice produce significantly less IFN-ß and CXCL10, and macrophages and plasmacytoid dendritic cells have a deficiency in activation following polyinosinic:polycytidylic acid administration in vivo. Furthermore, a deficiency in activation is observed in macrophages after LPS and polyinosinic:polycytidylic acid in vitro. In keeping with these findings, overexpression of ANXA1 resulted in enhanced IFN-ß and IFN-stimulated responsive element promoter activity, whereas silencing of ANXA1 impaired TLR3- and TLR4-induced IFN-ß and IFN-stimulated responsive element activation. In addition, we show that the C terminus of ANXA1 directly associates with TANK-binding kinase 1 to regulate IFN regulatory factor 3 translocation and phosphorylation. Our findings demonstrate that ANXA1 plays an important role in TLR activation, leading to an augmentation in the type 1 IFN antiviral cytokine response.


Asunto(s)
Anexina A1/metabolismo , Interferón beta/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , Transporte Activo de Núcleo Celular , Animales , Anexina A1/biosíntesis , Anexina A1/genética , Línea Celular , Quimiocina CXCL10/biosíntesis , Células Dendríticas/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/metabolismo , Lipopolisacáridos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Fosforilación , Poli I-C/farmacología , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA