Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 185(16): 2961-2974.e19, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35839760

RESUMEN

Wheat crops are frequently devastated by pandemic stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). Here, we identify and characterize a wheat receptor-like cytoplasmic kinase gene, TaPsIPK1, that confers susceptibility to this pathogen. PsSpg1, a secreted fungal effector vital for Pst virulence, can bind TaPsIPK1, enhance its kinase activity, and promote its nuclear localization, where it phosphorylates the transcription factor TaCBF1d for gene regulation. The phosphorylation of TaCBF1d switches its transcriptional activity on the downstream genes. CRISPR-Cas9 inactivation of TaPsIPK1 in wheat confers broad-spectrum resistance against Pst without impacting important agronomic traits in two years of field tests. The disruption of TaPsIPK1 leads to immune priming without constitutive activation of defense responses. Taken together, TaPsIPK1 is a susceptibility gene known to be targeted by rust effectors, and it has great potential for developing durable resistance against rust by genetic modifications.


Asunto(s)
Basidiomycota , Triticum , Basidiomycota/genética , Basidiomycota/metabolismo , Enfermedades de las Plantas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/microbiología , Virulencia/genética
2.
Front Plant Sci ; 11: 716, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695124

RESUMEN

Rac/Rop proteins play important roles in the regulation of cell growth and plant defense responses. However, the function of Rac/Rop proteins in wheat remains largely unknown. In this study, a small G protein gene, designated as TaRac6, was characterized from wheat (Triticum aestivum) in response to Puccinia striiformis f. sp. tritici (Pst) and was found to be highly homologous to the Rac proteins identified in other plant species. Transient expression analyses of the TaRac6-GFP fusion protein in Nicotiana benthamiana leaves showed that TaRac6 was localized in the whole cell. Furthermore, transient expression of TaRac6 inhibited Bax-triggered plant cell death (PCD) in N. benthamiana. Transcript accumulation of TaRac6 was increased at 24 h post-inoculation (hpi) in the compatible interaction between wheat and Pst, while it was not induced in an incompatible interaction. More importantly, silencing of TaRac6 by virus induced gene silencing (VIGS) enhanced the resistance of wheat (Suwon 11) to Pst (CYR31) by producing fewer uredinia. Histological observations revealed that the hypha growth of Pst was markedly inhibited along with more H2O2 generated in the TaRac6-silenced leaves in response to Pst. Moreover, transcript levels of TaCAT were significantly down-regulated, while those of TaSOD and TaNOX were significantly up-regulated. These results suggest that TaRac6 functions as a potential susceptibility factor, which negatively regulate the reactive oxygen species (ROS) burst in the wheat-Pst interaction.

3.
Sheng Wu Gong Cheng Xue Bao ; 33(12): 1968-1978, 2017 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-29271174

RESUMEN

By bioinformatics analysis, a putative keratinase gene gm2886 (Accession number: KY368946) was discovered in the genome of a feather-degrading strain, Streptomyces albidoflavus Fea-10. gm2886 was ligated into integrative Escherichia coli-Streptomyces shuttle vector pSET152 under the promoter PermE and added with C-terminal His-tag. The expression vector was transformed into Streptomyces pactum ACT12 by conjugal transfer and the recombinant protein GM2886-His6 was detected in fermentation broth. GM2886-His6 was purified and characterized. Its size was nearly 36 kDa. GM2886-His6 showed proteolytic activity towards a variety of substrates and could even degrade insoluble substrates, such as azure keratin and chicken feathers. The optimal pH and temperature of GM2886-His6 for proteolysis of casein was pH 10.0 and 50 ℃, respectively. The enzyme activity was inhibited by PMSF, but not EDTA, indicating that GM2886-His6 was a serine proteinase. Our results laid the foundation for the research of the molecular biological mechanism on feather-degrading and for the further utilization of Fea-10.


Asunto(s)
Genes Bacterianos , Péptido Hidrolasas/genética , Streptomyces/enzimología , Animales , Pollos , Plumas , Concentración de Iones de Hidrógeno , Queratinas , Streptomyces/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...