Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(31): eadk4331, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093969

RESUMEN

Homeostatic plasticity maintains the stability of functional brain networks. The axon initial segment (AIS), where action potentials start, undergoes dynamic adjustment to exert powerful control over neuronal firing properties in response to network activity changes. However, it is poorly understood whether this plasticity involves direct synaptic input to the AIS. Here, we show that changes of GABAergic synaptic input from chandelier cells (ChCs) drive homeostatic tuning of the AIS of principal neurons (PNs) in the prelimbic (PL) region, while those from parvalbumin-positive basket cells do not. This tuning is evident in AIS morphology, voltage-gated sodium channel expression, and PN excitability. Moreover, the impact of this homeostatic plasticity can be reflected in animal behavior. Social behavior, inversely linked to PL PN activity, shows time-dependent alterations tightly coupled to changes in AIS plasticity and PN excitability. Thus, AIS-originated homeostatic plasticity in PNs may counteract deficits elicited by imbalanced ChC presynaptic input at cellular and behavioral levels.


Asunto(s)
Segmento Inicial del Axón , Axones , Homeostasis , Plasticidad Neuronal , Sinapsis , Animales , Plasticidad Neuronal/fisiología , Segmento Inicial del Axón/metabolismo , Axones/fisiología , Axones/metabolismo , Ratones , Sinapsis/fisiología , Potenciales de Acción , Masculino , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo
2.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38659885

RESUMEN

The stability of functional brain network is maintained by homeostatic plasticity, which restores equilibrium following perturbation. As the initiation site of action potentials, the axon initial segment (AIS) of glutamatergic projection neurons (PyNs) undergoes dynamic adjustment that exerts powerful control over neuronal firing properties in response to changes in network states. Although AIS plasticity has been reported to be coupled with the changes of network activity, it is poorly understood whether it involves direct synaptic input to the AIS. Here we show that changes of GABAergic synaptic input to the AIS of cortical PyNs, specifically from chandelier cells (ChCs), are sufficient to drive homeostatic tuning of the AIS within 1-2 weeks, while those from parvalbumin-positive basket cells do not. This tuning is reflected in the morphology of the AIS, the expression level of voltage-gated sodium channels, and the intrinsic neuronal excitability of PyNs. Interestingly, the timing of AIS tuning in PyNs of the prefrontal cortex corresponds to the recovery of changes in social behavior caused by alterations of ChC synaptic transmission. Thus, homeostatic plasticity of the AIS at postsynaptic PyNs may counteract deficits elicited by imbalanced ChC presynaptic input. Teaser: Axon initial segment dynamically responds to changes in local input from chandelier cells to prevent abnormal neuronal functions.

3.
Hum Brain Mapp ; 45(4): e26586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38433651

RESUMEN

The assessment of consciousness states, especially distinguishing minimally conscious states (MCS) from unresponsive wakefulness states (UWS), constitutes a pivotal role in clinical therapies. Despite that numerous neural signatures of consciousness have been proposed, the effectiveness and reliability of such signatures for clinical consciousness assessment still remains an intense debate. Through a comprehensive review of the literature, inconsistent findings are observed about the effectiveness of diverse neural signatures. Notably, the majority of existing studies have evaluated neural signatures on a limited number of subjects (usually below 30), which may result in uncertain conclusions due to small data bias. This study presents a systematic evaluation of neural signatures with large-scale clinical resting-state electroencephalography (EEG) signals containing 99 UWS, 129 MCS, 36 emergence from the minimally conscious state, and 32 healthy subjects (296 total) collected over 3 years. A total of 380 EEG-based metrics for consciousness detection, including spectrum features, nonlinear measures, functional connectivity, and graph-based measures, are summarized and evaluated. To further mitigate the effect of data bias, the evaluation is performed with bootstrap sampling so that reliable measures can be obtained. The results of this study suggest that relative power in alpha and delta serve as dependable indicators of consciousness. With the MCS group, there is a notable increase in the phase lag index-related connectivity measures and enhanced functional connectivity between brain regions in comparison to the UWS group. A combination of features enables the development of an automatic detector of conscious states.


Asunto(s)
Estado de Conciencia , Vigilia , Humanos , Reproducibilidad de los Resultados , Benchmarking , Electroencefalografía , Estado Vegetativo Persistente
5.
Elife ; 122023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131301

RESUMEN

General anesthesia leads to a loss of consciousness and an unrousable state in patients. Although general anesthetics are widely used in clinical practice, their underlying mechanisms remain elusive. The potential involvement of nonneuronal cells is unknown. Microglia are important immune cells in the central nervous system (CNS) that play critical roles in CNS function and dysfunction. We unintentionally observed delayed anesthesia induction and early anesthesia emergence in microglia-depleted mice. We found that microglial depletion differentially regulates neuronal activities by suppressing the neuronal network of anesthesia-activated brain regions and activating emergence-activated brain regions. Thus, microglia facilitate and stabilize the anesthesia status. This influence is not mediated by dendritic spine plasticity. Instead, it relies on the activation of microglial P2Y12 and subsequent calcium influx, which facilitates the general anesthesia response. Together, we elucidate the regulatory role of microglia in general anesthesia, extending our knowledge of how nonneuronal cells modulate neuronal activities.


Asunto(s)
Encéfalo , Microglía , Humanos , Ratones , Animales , Microglía/fisiología , Neuronas/fisiología , Estado de Conciencia , Anestesia General
6.
Nat Commun ; 14(1): 7476, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978295

RESUMEN

As a major neuron type in the brain, the excitatory neuron (EN) regulates the lifespan in C. elegans. How the EN acquires senescence, however, is unknown. Here, we show that growth differentiation factor 11 (GDF11) is predominantly expressed in the EN in the adult mouse, marmoset and human brain. In mice, selective knock-out of GDF11 in the post-mitotic EN shapes the brain ageing-related transcriptional profile, induces EN senescence and hyperexcitability, prunes their dendrites, impedes their synaptic input, impairs object recognition memory and shortens the lifespan, establishing a functional link between GDF11, brain ageing and cognition. In vitro GDF11 deletion causes cellular senescence in Neuro-2a cells. Mechanistically, GDF11 deletion induces neuronal senescence via Smad2-induced transcription of the pro-senescence factor p21. This work indicates that endogenous GDF11 acts as a brake on EN senescence and brain ageing.


Asunto(s)
Caenorhabditis elegans , Factores de Diferenciación de Crecimiento , Adulto , Ratones , Humanos , Animales , Caenorhabditis elegans/metabolismo , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Envejecimiento/genética , Encéfalo/metabolismo , Neuronas/metabolismo , Proteínas Morfogenéticas Óseas
7.
Sci Adv ; 9(41): eadf0708, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824618

RESUMEN

Fast-spiking interneurons (FSINs) provide fast inhibition that synchronizes neuronal activity and is critical for cognitive function. Fast synchronization frequencies are evolutionary conserved in the expanded human neocortex despite larger neuron-to-neuron distances that challenge fast input-output transfer functions of FSINs. Here, we test in human neurons from neurosurgery tissue, which mechanistic specializations of human FSINs explain their fast-signaling properties in human cortex. With morphological reconstructions, multipatch recordings, and biophysical modeling, we find that despite threefold longer dendritic path, human FSINs maintain fast inhibition between connected pyramidal neurons through several mechanisms: stronger synapse strength of excitatory inputs, larger dendrite diameter with reduced complexity, faster AP initiation, and faster and larger inhibitory output, while Na+ current activation/inactivation properties are similar. These adaptations underlie short input-output delays in fast inhibition of human pyramidal neurons through FSINs, explaining how cortical synchronization frequencies are conserved despite expanded and sparse network topology of human cortex.


Asunto(s)
Neocórtex , Neuronas , Humanos , Potenciales de Acción/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Interneuronas/fisiología
8.
iScience ; 26(10): 107857, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37752954

RESUMEN

Optogenetic manipulation with single-cell resolution can be achieved by two-photon excitation. However, this frequently requires relatively high laser powers. Here, we developed a novel strategy that can improve the efficiency of current two-photon stimulation technologies by positioning fluorescent proteins or small fluorescent molecules with high two-photon cross-sections in the vicinity of opsins. This generates a highly localized source of endogenous single-photon illumination that can be tailored to match the optimal opsin absorbance. Through neuronal and vascular stimulation in the live mouse brain, we demonstrate the utility of this technique to achieve efficient opsin stimulation, without loss of cellular resolution. We also provide a theoretical framework for understanding the potential advantages and constrains of this methodology, with directions for future improvements. Altogether, this fluorescence transfer illumination method opens new possibilities for experiments difficult to implement in the live brain such as all-optical neural interrogation and control of regional cerebral blood flow.

9.
Nat Aging ; 3(10): 1288-1311, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37697166

RESUMEN

As important immune cells, microglia undergo a series of alterations during aging that increase the susceptibility to brain dysfunctions. However, the longitudinal characteristics of microglia remain poorly understood. In this study, we mapped the transcriptional and epigenetic profiles of microglia from 3- to 24-month-old mice. We first discovered unexpected sex differences and identified age-dependent microglia (ADEM) genes during the aging process. We then compared the features of aging and reactivity in female microglia at single-cell resolution and epigenetic level. To dissect functions of aged microglia excluding the influence from other aged brain cells, we established an accelerated microglial turnover model without directly affecting other brain cells. By this model, we achieved aged-like microglia in non-aged brains and confirmed that aged-like microglia per se contribute to cognitive decline. Collectively, our work provides a comprehensive resource for decoding the aging process of microglia, shedding light on how microglia maintain brain functions.


Asunto(s)
Disfunción Cognitiva , Microglía , Femenino , Ratones , Masculino , Animales , Encéfalo , Envejecimiento/genética , Disfunción Cognitiva/genética , Epigénesis Genética
10.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606043

RESUMEN

Attention-deficit hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that affects approximately 5.3% of children and approximately 2.5% of adults. There is an intimate relationship between ADHD and sleep disturbance. Specifically, individuals carry a mutation in the core circadian gene CRY1 (c. 1657 + 3A > C), which results in the deletion of exon 11 expression in the CRY1 protein (CRY1Δ11), causing them to exhibit typical ADHD symptoms. However, the underlying mechanism is still elusive. In this study, we demonstrate that Cry1Δ11 (c. 1717 + 3A > C) mice showed ADHD-like symptoms, including hyperactivity, impulsivity, and deficits in learning and memory. A hyperactive cAMP signaling pathway was found in the nucleus accumbens (NAc) of Cry1Δ11 mice. We further demonstrated that upregulated c-Fos was mainly localized in dopamine D1 receptor-expressing medium spiny neurons (DRD1-MSNs) in the NAc. Neuronal excitability of DRD1-MSNs in the NAc of Cry1Δ11 mice was significantly higher than that of WT controls. Mechanistically, the CRY1Δ11 protein, in contrast to the WT CRY1 protein, failed to interact with the Gαs protein and inhibit DRD1 signaling. Finally, the DRD1 antagonist SCH23390 normalized most ADHD-like symptoms in Cry1Δ11 mice. Thus, our results reveal hyperactive DRD1 signaling as an underlying mechanism and therapeutic target for ADHD induced by the highly prevalent CRY1Δ11 mutation.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Animales , Ratones , Trastorno por Déficit de Atención con Hiperactividad/genética , Receptores de Dopamina D1/genética , Transducción de Señal , Exones , Mutación
11.
bioRxiv ; 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37502942

RESUMEN

A fundamental feature of the cerebral cortex is the ability to rapidly turn on and off maintained activity within ensembles of neurons through recurrent excitation balanced by inhibition. Here we demonstrate that reduction of the h-current, which is especially prominent in pyramidal cell dendrites, strongly increases the ability of local cortical networks to generate maintained recurrent activity. Reduction of the h-current resulted in hyperpolarization and increase in input resistance of both the somata and apical dendrites of layer 5 pyramidal cells, while strongly increasing the dendrosomatic transfer of low (<20 Hz) frequencies, causing an increased responsiveness to dynamic clamp-induced recurrent network-like activity injected into the dendrites and substantially increasing the duration of spontaneous Up states. We propose that modulation of the h-current may strongly control the ability of cortical networks to generate recurrent persistent activity and the formation and dissolution of neuronal ensembles.

12.
Nat Commun ; 14(1): 2523, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130842

RESUMEN

An important role for liver in the regulation of adipose tissue thermogenesis upon cold exposure has been suggested; however, the underlying mechanisms remain incompletely defined. Here, we identify elevated serum bradykinin levels in response to acute cold exposure in male mice. A bolus of anti-bradykinin antibodies reduces body temperature during acute cold exposure, whereas bradykinin has the opposite effect. We demonstrate that bradykinin induces brown adipose tissue thermogenesis and white adipose tissue browning, and bradykinin increases uncoupling protein 1 (UCP1) expression in adipose tissue. The bradykinin B2 receptor (B2R), adrenergic signaling and nitric oxide signaling are involved in regulating bradykinin-increased UCP1 expression. Moreover, acute cold exposure inhibits hepatic prolyl endopeptidase (PREP) activity, causing reduced liver bradykinin degradation and increased serum bradykinin levels. Finally, by blocking the breakdown of bradykinin, angiotensin-converting enzyme inhibitors (ACEIs) increase serum bradykinin levels and induce brown adipose tissue thermogenesis and white adipose tissue browning via B2R. Collectively, our data provide new insights into the mechanisms underlying organ crosstalk in whole-body physiology control during cold exposure and also suggest bradykinin as a possible anti-obesity target.


Asunto(s)
Tejido Adiposo Blanco , Obesidad , Ratones , Masculino , Animales , Tejido Adiposo Blanco/metabolismo , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Termogénesis , Hígado/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Frío , Ratones Endogámicos C57BL
13.
Proc Natl Acad Sci U S A ; 120(19): e2215590120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126693

RESUMEN

Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.


Asunto(s)
Factor de Transcripción Activador 4 , Tálamo , Masculino , Animales , Ratones , Factor de Transcripción Activador 4/metabolismo , Tálamo/metabolismo , Neuronas/metabolismo , Ratones Noqueados , Colon/metabolismo
15.
Cell Rep ; 42(1): 111984, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640347

RESUMEN

Lysosomal amino acid accumulation is implicated in several diseases, but its role in insulin resistance, the central mechanism to type 2 diabetes and many metabolic diseases, is unclear. In this study, we show the hepatic expression of lysosomal membrane protein solute carrier family 7 member 14 (SLC7A14) is increased in insulin-resistant mice. The promoting effect of SLC7A14 on insulin resistance is demonstrated by loss- and gain-of-function experiments. SLC7A14 is further demonstrated as a transporter resulting in the accumulation of lysosomal γ-aminobutyric acid (GABA), which induces insulin resistance via inhibiting mTOR complex 2 (mTORC2)'s activity. These results establish a causal link between lysosomal amino acids and insulin resistance and suggest that SLC7A14 inhibition may provide a therapeutic strategy in treating insulin resistance-related and GABA-related diseases and may provide insights into the upstream mechanisms for mTORC2, the master regulator in many important processes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Aminoácidos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Lisosomas/metabolismo
16.
Nat Biomed Eng ; 7(3): 253-269, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36424465

RESUMEN

Organoids with region-specific architecture could facilitate the repair of injuries of the central nervous system. Here we show that human astrocytes can be directly reprogrammed into early neuroectodermal cells via the overexpression of OCT4, the suppression of p53 and the provision of the small molecules CHIR99021, SB431542, RepSox and Y27632. We also report that the activation of signalling mediated by fibroblast growth factor, sonic hedgehog and bone morphogenetic protein 4 in the reprogrammed cells induces them to form spinal-cord organoids with functional neurons specific to the dorsal and ventral domains. In mice with complete spinal-cord injury, organoids transplanted into the lesion differentiated into spinal-cord neurons, which migrated and formed synapses with host neurons. The direct reprogramming of human astrocytes into neurons may pave the way for in vivo neural organogenesis from endogenous astrocytes for the repair of injuries to the central nervous system.


Asunto(s)
Astrocitos , Traumatismos de la Médula Espinal , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Neuronas/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Organoides/metabolismo
17.
Neurosci Bull ; 39(4): 576-588, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36502511

RESUMEN

Autapses selectively form in specific cell types in many brain regions. Previous studies have also found putative autapses in principal spiny projection neurons (SPNs) in the striatum. However, it remains unclear whether these neurons indeed form physiologically functional autapses. We applied whole-cell recording in striatal slices and identified autaptic cells by the occurrence of prolonged asynchronous release (AR) of neurotransmitters after bursts of high-frequency action potentials (APs). Surprisingly, we found no autaptic AR in SPNs, even in the presence of Sr2+. However, robust autaptic AR was recorded in parvalbumin (PV)-expressing neurons. The autaptic responses were mediated by GABAA receptors and their strength was dependent on AP frequency and number. Further computer simulations suggest that autapses regulate spiking activity in PV cells by providing self-inhibition and thus shape network oscillations. Together, our results indicate that PV neurons, but not SPNs, form functional autapses, which may play important roles in striatal functions.


Asunto(s)
Cuerpo Estriado , Parvalbúminas , Parvalbúminas/metabolismo , Cuerpo Estriado/metabolismo , Interneuronas/fisiología , Neuronas/metabolismo , Neostriado
18.
Neuroscientist ; 29(4): 488-505, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35086369

RESUMEN

Dysfunction in the prefrontal cortex is commonly implicated in anxiety disorders, but the mechanisms remain unclear. Approach-avoidance conflict tasks have been extensively used in animal research to better understand how changes in neural activity within the prefrontal cortex contribute to avoidance behaviors, which are believed to play a major role in the maintenance of anxiety disorders. In this article, we first review studies utilizing in vivo electrophysiology to reveal the relationship between changes in neural activity and avoidance behavior in rodents. We then review recent studies that take advantage of optical and genetic techniques to test the unique contribution of specific prefrontal cortex circuits and cell types to the control of anxiety-related avoidance behaviors. This new body of work reveals that behavior during approach-avoidance conflict is dynamically modulated by individual cell types, distinct neural pathways, and specific oscillatory frequencies. The integration of these different pathways, particularly as mediated by interactions between excitatory and inhibitory neurons, represents an exciting opportunity for the future of understanding anxiety.


Asunto(s)
Trastornos de Ansiedad , Ansiedad , Animales , Trastornos de Ansiedad/metabolismo , Corteza Prefrontal/fisiología , Reacción de Prevención/fisiología , Vías Nerviosas
19.
Nat Commun ; 13(1): 6233, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280666

RESUMEN

Microglia are important immune cells in the central nervous system (CNS) that undergo turnover throughout the lifespan. If microglial debris is not removed in a timely manner, accumulated debris may influence CNS function. Clearance of microglial debris is crucial for CNS homeostasis. However, underlying mechanisms remain obscure. We here investigate how dead microglia are removed. We find that although microglia can phagocytose microglial debris in vitro, the territory-dependent competition hinders the microglia-to-microglial debris engulfment in vivo. In contrast, microglial debris is mainly phagocytosed by astrocytes in the brain, facilitated by C4b opsonization. The engulfed microglial fragments are then degraded in astrocytes via RUBICON-dependent LC3-associated phagocytosis (LAP), a form of noncanonical autophagy. Interference with C4b-mediated engulfment and subsequent LAP disrupt the removal and degradation of microglial debris, respectively. Together, we elucidate the cellular and molecular mechanisms of microglial debris removal in mice, extending the knowledge on the maintenance of CNS homeostasis.


Asunto(s)
Astrocitos , Microglía , Animales , Ratones , Microglía/metabolismo , Fagocitosis/fisiología , Autofagia , Sistema Nervioso Central , Péptidos y Proteínas de Señalización Intracelular/metabolismo
20.
Commun Biol ; 5(1): 1123, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274105

RESUMEN

The basal ganglia play a key role in integrating a variety of human behaviors through the cortico-basal ganglia-thalamo-cortical loops. Accordingly, basal ganglia disturbances are implicated in a broad range of debilitating neuropsychiatric disorders. Despite accumulating knowledge of the basal ganglia functional organization, the neural substrates and circuitry subserving functions have not been directly mapped in humans. By direct electrical stimulation of distinct basal ganglia regions in 35 refractory epilepsy patients undergoing stereoelectroencephalography recordings, we here offer currently the most complete overview of basal ganglia functional characterization, extending not only to the expected sensorimotor responses, but also to vestibular sensations, autonomic responses, cognitive and multimodal effects. Specifically, some locations identified responses weren't predicted by the model derived from large-scale meta-analyses. Our work may mark an important step toward understanding the functional architecture of the human basal ganglia and provide mechanistic explanations of non-motor symptoms in brain circuit disorders.


Asunto(s)
Ganglios Basales , Sensación , Humanos , Vías Nerviosas/fisiología , Ganglios Basales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA