Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(8): 6839-6851, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38613799

RESUMEN

BACKGROUND: Gut microbes and age are both factors that influence the development of disease. The community structure of gut microbes is affected by age. OBJECTIVE: To plot time-dependent gut microbe profiles in individuals over 45 years old and explore the correlation between age and gut microbes. METHODS: Fecal samples were collected from 510 healthy individuals over 45 years old. Shannon index, Simpson index, Ace index, etc. were used to analyze the diversity of gut microbes. The beta diversity analysis, including non-metric multidimensional scaling (NMDS), was used to analyze community distribution. Linear discriminant analysis (LDA) and random forest (RF) algorithm were used to analyze the differences of gut microbes. Trend analysis was used to plot the abundances of characteristic gut microbes in different ages. RESULTS: The individuals aged 45-49 had the highest richness of gut bacteria. Fifteen characteristic gut microbes, including Siphoviridae and Bifidobacterium breve, were screened by RF algorithm. The abundance of Ligiactobacillus and Microviridae were higher in individuals older than 65 years. Moreover, the abundance of Blautia_A massiliensis, Lubbockvirus and Enterocloster clostridioformis decreased with age and the abundance of Klebsiella variicola and Prevotella increased with age. The functional genes, such as human diseases and aging, were significantly different among different aged individuals. CONCLUSIONS: The individuals in different ages have characteristic gut microbes. The changes in community structure of gut microbes may be related to age-induced diseases.


Asunto(s)
Envejecimiento , Heces , Microbioma Gastrointestinal , Humanos , Persona de Mediana Edad , Envejecimiento/fisiología , Anciano , Masculino , Femenino , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Factores de Edad , Anciano de 80 o más Años
2.
BMC Microbiol ; 22(1): 312, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539710

RESUMEN

BACKGROUND: The mortality of colorectal cancer is high, the malignant degree of poorly differentiated colorectal cancer is high, and the prognosis is poor. OBJECTIVE: To screen the characteristic intestinal microbiota of poorly differentiated intestinal cancer. METHODS: Fecal samples were collected from 124 patients with moderately differentiated CRC and 123 patients with poorly differentiated CRC, and the bacterial 16S rRNA V1-V4 region of the fecal samples was sequenced. Alpha diversity analysis was performed on fecal samples to assess the diversity and abundance of flora. The RDP classifier Bayesian algorithm was used to analyze the community structure. Linear discriminant analysis and Student's t test were used to screen the differences in flora. The PICRUSt1 method was used to predict the bacterial function, and six machine learning models, including logistic regression, random forest, neural network, support vector machine, CatBoost and gradient boosting decision tree, were used to construct a prediction model for the poor differentiation of colorectal cancer. RESULTS: There was no significant difference in fecal flora alpha diversity between moderately and poorly differentiated colorectal cancer (P > 0.05). The bacteria that accounted for a large proportion of patients with poorly differentiated and moderately differentiated colorectal cancer were Blautia, Escherichia-Shigella, Streptococcus, Lactobacillus, and Bacteroides. At the genus level, there were nine bacteria with high abundance in the poorly differentiated group, including Bifidobacterium, norank_f__Oscillospiraceae, Eisenbergiella, etc. There were six bacteria with high abundance in the moderately differentiated group, including Megamonas, Erysipelotrichaceae_UCG-003, Actinomyces, etc. The RF model had the highest prediction accuracy (100.00% correct). The bacteria that had the greatest variable importance in the model were Pseudoramibacter, Megamonas and Bifidobacterium. CONCLUSION: The degree of pathological differentiation of colorectal cancer was related to gut flora, and poorly differentiated colorectal cancer had some different bacterial flora, and intestinal bacteria can be used as biomarkers for predicting poorly differentiated CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Neoplasias Colorrectales/microbiología , ARN Ribosómico 16S/genética , Teorema de Bayes , Bacterias/genética , Microbioma Gastrointestinal/genética , Heces/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...