Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
ACS Appl Mater Interfaces ; 16(6): 7297-7309, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305856

RESUMEN

Serious open-circuit voltage (Voc) loss originating from nonradiative recombination and mismatch energy level at TiO2/perovskite buried interface dramatically limits the photovoltaic performance of all-inorganic CsPbIxBr3-x (x = 1, 2) perovskite solar cells (PSCs) fabricated through low-temperature methods. Here, an ionic liquid (IL) bridge is constructed by introducing 1-butyl-3-methylimidazolium acetate (BMIMAc) IL to treat the TiO2/perovskite buried interface, bilaterally passivate defects and modulate energy alignment. Therefore, the Voc of all-inorganic CsPbIBr2 PSCs modified by BMIMAc (Target-1) significantly increases by 148 mV (from 1.213 to 1.361 V), resulting in the efficiency increasing to 10.30% from 7.87%. Unsealed Target-1 PSCs show outstanding long-term and thermal stability. During the accelerated degradation process (85 °C, RH: 50∼60%), the Target-1 PSCs achieve a champion PCE of 11.94% with a remarkable Voc of 1.403 V, while the control PSC yields a promising PCE of 10.18% with a Voc of 1.319 V. In particular, the Voc of 1.403 V is the highest Voc reported so far in carbon-electrode-based CsPbIBr2 PSCs. Moreover, this strategy enables the modified all-inorganic CsPbI2Br PSCs to achieve a Voc of 1.295 V and a champion efficiency of 15.20%, which is close to the reported highest PCE of 15.48% for all-inorganic CsPbI2Br PSCs prepared by a low-temperature process. This study provides a simple BMIMAc IL bridge to assist bifacial defect passivation and elevate the photovoltaic performance of all-inorganic CsPbIxBr3-x (x = 1, 2) PSCs.

2.
Talanta ; 272: 125735, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364556

RESUMEN

Accurate and precise detection of disease-associated proteins, such as C-reactive protein (CRP), remains a challenge in biosensor development. Herein, we present a novel approach-an integrated disposable aptasensor array-designed for precise, ultra-sensitive, and parallel detection of CRP in plasma samples. This integrated biosensing array platform enables multiplex parallel testing, ensuring the accuracy and reliability in sample analysis. The ultra-sensitivity of this biosensor is achieved through multiplex signal amplification. Leveraging the superior conductivity and extensive surface area of MOF-derived nanoporous carbon material (CMOF), the biosensor enhances recognition elements (aptamers) by catalyzing the horseradish peroxidase (HRP) label enzyme reaction to multiply the number of probe molecules. Optimized conditions yielded exceptional performance, exhibiting high accuracy (relative standard deviation, RSD≤10.0 %), a low detection limit (0.3 pg/mL, S/N = 3), ultra-sensitivity (0.16 µA/ng mL-1 mm-2), and a rapid response (seven parallel tests within 60 min). Importantly, this multi-unit integrated disposable aptasensor array accurately quantified CRP in human serum, demonstrating comparable results to commercial enzyme-linked immunosorbent assay (ELISA). This technology showcases promise for detecting various biomarkers using a unified approach, presenting an appealing strategy for early disease diagnosis and biological analysis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Proteína C-Reactiva , Aptámeros de Nucleótidos/química , Carbono , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Oro/química , Nanopartículas del Metal/química
3.
Food Chem ; 442: 138359, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219564

RESUMEN

To investigate the structural changes of casein in response to the pressurization process under varying pressure levels, this study carried out both ex-situ and in-situ high-pressure experiments. In the in-situ experiments, the surface-enhanced Raman scattering (SERS) technique was combined with a diamond anvil cell (DAC). The high-pressure experiments indicated that significant dissociation of casein occurred at 200 MPa. Over the range of 0-302 MPa, casein exhibited both dissociation and aggregation behaviors. However, casein tended towards aggregation at pressures of 302-486 MPa, with a further increase observed beyond 486 MPa.


Asunto(s)
Caseínas , Micelas , Caseínas/química
4.
Light Sci Appl ; 12(1): 290, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052798

RESUMEN

Reflective displays have stimulated considerable interest because of their friendly readability and low energy consumption. Herein, we develop a reflective display technique via an electro-microfluidic assembly of particles (eMAP) strategy whereby colored particles assemble into annular and planar structures inside a dyed water droplet to create "open" and "closed" states of a display pixel. Water-in-oil droplets are compressed within microwells to form a pixel array. The particles dispersed in droplets are driven by deformation-strengthened dielectrophoretic force to achieve fast and reversible motion and assemble into multiple structures. This eMAP based device can display designed information in three primary colors with ≥170° viewing angle, ~0.14 s switching time, and bistability with an optimized material system. This proposed technique demonstrates the basis of a high-performance and energy-saving reflective display, and the display speed and color quality could be further improved by structure and material optimization; exhibiting a potential reflective display technology.

5.
Appl Opt ; 62(29): 7873-7880, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37855499

RESUMEN

Sapphire is an important substrate material in optoelectronic devices, and it is also widely used as a touch screen panel. In order to achieve high quality cutting of sapphire, the stealth dicing of 500 µm thick sapphire by a picosecond Bessel beam is studied in this paper. The influences of laser polarization direction and process parameters on cutting section roughness were studied. By controlling the laser polarization direction, different crack propagation morphologies were obtained. When the polarization direction was vertical to the cutting path, the crack propagation path was straighter, and the sapphire had better cutting quality. The laser processing parameters, including burst mode, hole spacing, and pulse energy, had a significant impact on the cutting section roughness. When the polarization direction was vertical to the cutting path under the optimal process parameters, the cutting section was uniform and flat, with no recondensable particles, no ripples, and no chamfer, and an 89.7 nm average roughness of the cutting section could be obtained.

6.
ACS Appl Mater Interfaces ; 15(38): 45064-45075, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37710994

RESUMEN

Tin-based perovskite solar cells (T-PSCs) have become the star photovoltaic products in recent years due to their low environmental toxicity and superior photovoltaic performance. However, the easy oxidation of Sn2+ and the energy level mismatch between the perovskite film and charge transport layer limit its efficiency. In order to regulate the microstructure and photoelectric properties of tin-based perovskite films to enhance the efficiency and stability of T-PSCs, guanidinium bromide (GABr) and organic Lewis-based additive methylamine cyanate (MAOCN) are introduced into the FA0.9PEA0.1SnI3-based perovskite precursor. A series of characterizations show that the interactions between additive molecules and perovskite mutually reconcile to improve the photovoltaic performance of T-PSCs. The introduction of GABr can adjust the band gap of the perovskite film and energy level alignment of T-PSCs. They significantly increase the open-circuit voltage (Voc). The MAOCN material can form hydrogen bonds with SnI2 in the precursor, which can inhibit the oxidation of Sn2+ and significantly improve the short-circuit current density (Jsc). The synergistic modulation of the dual additives reduces the trap-state density and improves photovoltaic performance, resulting in an increased champion efficiency of 9.34 for 5.22% of the control PSCs. The unencapsulated T-PSCs with GABr and MAOCN dual additives prepared in the optimized process can retain more than 110% of their initial efficiency after aging for 1750 h in a nitrogen glovebox, but the control PSCs maintain only 50% of their initial efficiency kept in the same conditions. This work provides a new perspective to further improve the efficiency and stability of T-PSCs.

7.
Anal Chem ; 95(34): 12875-12883, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37581609

RESUMEN

Single-cell analysis has important implications for understanding the specificity of cells. To analyze the specificity of rare cells in complex blood and biopsy samples, selective lysis of target single cells is pivotal but difficult. Microfluidics, particularly droplet microfluidics, has emerged as a promising tool for single-cell analysis. In this paper, we present a smart droplet microfluidic system that allows for single-cell selective lysis and real-time sorting, aided by the techniques of microinjection and image recognition. A custom program evolved from Python is proposed for recognizing target droplets and single cells, which also coordinates the operation of various parts in a whole microfluidic system. We have systematically investigated the effects of voltage and injection pressure applied to the oil-water interface on droplet microinjection. An efficient and selective droplet injection scheme with image feedback has been demonstrated, with an efficiency increased dramatically from 2.5% to about 100%. Furthermore, we have proven that the cell lysis solution can be selectively injected into target single-cell droplets. Then these droplets are shifted into the sorting area, with an efficiency for single K562 cells reaching up to 73%. The system function is finally explored by introducing complex cell samples, namely, K562 cells and HUVECs, with a success rate of 75.2% in treating K562 cells as targets. This system enables automated single-cell selective lysis without the need for manual handling and sheds new light on the cooperation with other detection techniques for a broad range of single-cell analysis.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microfluídica/métodos , Microinyecciones , Hidrolasas , Análisis de la Célula Individual/métodos , Células K562 , Técnicas Analíticas Microfluídicas/métodos
8.
J Colloid Interface Sci ; 652(Pt A): 557-566, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37607418

RESUMEN

Controllable construction and manipulation of artificial multi-compartmental structures are crucial in understanding and imitating smart molecular elements such as biological cells and on-demand delivery systems. Here, we report a liquid crystal droplet (LCD) based three-dimensional system for controllable and reversible ingestion and release of guest aqueous droplets (GADs). Induced by interfacial thermodynamic fluctuation and internal topological defect, microscale LCDs with perpendicular anchoring condition at the interface would spontaneously ingest external components from the surroundings and transform them as radially assembled tiny GADs inside LCDs. Landau-de Gennes free-energy model is applied to describe and explain the assembly dynamics and morphologies of these tiny GADs, which presents a good agreement with experimental observations. Furthermore, the release of these ingested GADs can be actively triggered by changing the anchoring conditions at the interface of LCDs. Since those ingestion and release processes are controllable and happen very gently at room temperature and neutral pH environment without extra energy input, these microscale LCDs are very prospective to provide a unique and viable route for constructing hierarchical 3D structures with tunable components and compartments.

9.
ACS Appl Mater Interfaces ; 15(28): 33643-33653, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37400996

RESUMEN

Tin-based perovskite solar cells (TPSCs) have become one of the most prospective photovoltaic materials due to their remarkable optoelectronic properties and relatively low toxicity. Nevertheless, the rapid crystallization of perovskites and the easy oxidization of Sn2+ to Sn4+ make it challenging to fabricate efficient TPSCs. In this work, a piperazine iodide (PI) material with -NH- and -NH2+- bifunctional groups is synthesized and introduced into the PEA0.1FA0.9SnI3-based precursor solution to tune the microstructure, charge transport, and stability of TPSCs. Compared with piperazine (PZ) containing only the -NH- group, the PI additive displays better effects on regulating the microstructure and crystallization, inhibiting Sn2+ oxidation and reducing trap states, resulting in an optimal efficiency of 10.33%. This is substantially better than that of the reference device (6.42%). Benefiting from the fact that PI containing -NH- and -NH2+- groups can passivate both positively charged defects and negatively charged halogen defects, unencapsulated TPSCs modified with the PI material can maintain about 90% of their original efficiency after being kept in a N2 atmosphere for 1000 h, much higher than the value of 47% in reference TPSCs without additives. This work provides a practical method to prepare efficient and stable pure TPSCs.

10.
Langmuir ; 39(29): 10189-10198, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37432677

RESUMEN

Electrowetting-on-dielectric (EWOD) technology has been considered as a promising candidate for digital microfluidic (DMF) applications due to its outstanding flexibility and integrability. The dielectric layer with a hydrophobic surface is the key element of an EWOD device, determining its driving voltage, reliability, and lifetime. Hereby, inspired by the ionic-liquid-filled structuring polymer with high capacitance independent on thickness, namely ion gel (IG), we develop a polymer (P)-ion gel-amorphous fluoropolymer, namely, PIGAF, composite film as a replaceable hydrophobic dielectric layer for fabrication of a high-efficiency and stable EWOD-DMF device at relatively low voltage. The results show that the proposed EWOD devices using the PIGAF-based dielectric layer can achieve a large contact angle (θ) change of ∼50° and excellent reversibility with a contact angle hysteresis of ≤5° at a relatively low voltage of 30 Vrms. More importantly, the EWOD actuation voltage did not change obviously with the PIGAF film thickness in the range of several to tens of microns, enabling the thickness of the film to be adjusted according to the demand within a certain range while keeping the actuation voltage low. An EWOD-DMF device can be prepared by simply stacking a PIGAF film onto a PCB board, demonstrating stable droplet actuation (motion) at 30 Vrms and 1 kHz as well as a maximum moving velocity of 69 mm/s at 140 Vrms and 1 kHz. The PIGAF film was highly stable and reliable, maintaining excellent EWOD performance after multiple droplet manipulations (≥50 cycles) or long-term storage of 1 year. The proposed EWOD-DMF device has been demonstrated for digital chemical reactions and biomedical sensing applications.

11.
Small ; 19(45): e2302998, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37449335

RESUMEN

Droplet array is widely applied in single cell analysis, drug screening, protein crystallization, etc. This work proposes and validates a method for rapid formation of uniform droplet array based on microwell confined droplets electro-coalescence of screen-printed emulsion droplets, namely electro-coalescence droplet array (ECDA). The electro-coalescence of droplets is according to the polarization induced electrostatic and dielectrophoretic forces, and the dielectrowetting effect. The photolithographically fabricated microwells are highly regular and reproducible, ensuring identical volume and physical confinement to achieve uniform droplet array, and meanwhile the microwell isolation protects the paired water droplets from further fusion and broadens its feasibility to different fluidic systems. Under optimized conditions, a droplet array with an average diameter of 85 µm and a throughput of 106 in a 10 cm × 10 cm chip can be achieved within 5 s at 120 Vpp and 50 kHz. This ECDA chip is validated for various microwell geometries and functional materials. The optimized ECDA are successfully applied for digital viable bacteria counting, showing comparable results to the plate culture counting. Such an ECDA chip, as a digitizable and high-throughput platform, presents excellent potential for high-throughput screening, analysis, absolute quantification, etc.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123149, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478707

RESUMEN

In this work, a novel "turn-on" fluorescence sensor for the detection of H2O2 and glucose was developed based on green fluorescent carbon dots (CDs). The CDs was newly prepared by a facile one-pot hydrothermal method with Eosin Y and branched polyethylenimine as precursors. Interestingly, in the presence of H2O2 and HRP, the fluorescence of the CDs enhanced significantly with a red-shift emission due to their "aggregation". Meanwhile, the oxidation of glucose catalyzed by glucose oxidase could generate H2O2. Thus, a simple sensing system based on the CDs as fluorescent probes was constructed for H2O2 and glucose determination, avoiding the fluorescence quenching and subsequent recovery process in conventional turn-on strategy. The method showed good selectivity and sensitivity for glucose sensing with the detection limit of 0.12 µM. The method was further applied to glucose detection in real samples. The obtained results demonstrated the simplicity, selectivity and practicality of the method. This work expands the carbon nanomaterials with fluorescence emission enhancement properties. It provides a new and direct "turn-on" strategy for H2O2 and glucose detection, which could be a simple and effective tool for screening biological substances involved in H2O2-generation reaction.


Asunto(s)
Glucosa , Puntos Cuánticos , Carbono , Peróxido de Hidrógeno , Glucosa Oxidasa , Colorantes Fluorescentes , Límite de Detección
13.
Angew Chem Int Ed Engl ; 62(42): e202306901, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37302981

RESUMEN

The sluggish sulfur redox kinetics and shuttle effect of lithium polysulfides (LiPSs) are recognized as the main obstacles to the practical applications of the lithium-sulfur (Li-S) batteries. Accelerated conversion by catalysis can mitigate these issues, leading to enhanced Li-S performance. However, a catalyst with single active site cannot simultaneously accelerate multiple LiPSs conversion. Herein, we developed a novel dual-defect (missing linker and missing cluster defects) metal-organic framework (MOF) as a new type of catalyst to achieve synergistic catalysis for the multi-step conversion reaction of LiPSs. Electrochemical tests and first-principle density functional theory (DFT) calculations revealed that different defects can realize targeted acceleration of stepwise reaction kinetics for LiPSs. Specifically, the missing linker defects can selectively accelerate the conversion of S8 →Li2 S4 , while the missing cluster defects can catalyze the reaction of Li2 S4 →Li2 S, so as to effectively inhibit the shuttle effect. Hence, the Li-S battery with an electrolyte to sulfur (E/S) ratio of 8.9 mL g-1 delivers a capacity of 1087 mAh g-1 at 0.2 C after 100 cycles. Even at high sulfur loading of 12.9 mg cm-2 and E/S=3.9 mL g-1 , an areal capacity of 10.4 mAh cm-2 for 45 cycles can still be obtained.

14.
Opt Express ; 31(10): 15940-15941, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157683

RESUMEN

We have found an error in our work reported in [Opt. Express31(4), 6241 (2023)10.1364/OE.483433], which we correct in this erratum. The authors apologize for this error and emphasize that none of the results are affected by this error.

15.
Lab Chip ; 23(12): 2798-2807, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37199123

RESUMEN

Chirality is universal in nature and in biological systems, and the chirality of cholesteric liquid crystals (Ch-LC) is both controllable and quantifiable. Herein, a strategy for precise chirality recognition in a nematic LC host within soft microscale confined droplets is reported. This approach facilitates applications in distance and curvature sensing as well as on-site characterization of the overall uniformity and bending movements of a flexible device. Due to interfacial parallel anchoring, monodisperse Ch-LC spherical microdroplets show radial spherical structure (RSS) rings with a central radical point-defect hedgehog core. Strain-induced droplet deformation destabilizes the RSS configuration and induces the recognition of chirality, creating "core-shell" structures with distinguishable sizes and colors. In practice, an optical sensor is achieved due to the rich palette of optically active structures that can be utilized for gap distance measuring and the monitoring of curvature bending. The properties reported here and the constructed device have great potential for applications in soft robotics, wearable sensors, and advanced optoelectronic devices.

16.
Micromachines (Basel) ; 14(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241686

RESUMEN

This paper reports the synthesis of yellow-charged particles with a core-shell structure by modifying yellow pigment 181 particles using an ionic liquid under the sol-gel and grafting methods. The core-shell particles were characterized using various methods, including energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, colorimetry, thermogravimetric analysis, and others. The changes in zeta potential and particle size before and after modification were also measured. The results demonstrate that the surface of the PY181 particles was successfully coated with SiO2 microspheres, resulting in weak color change but increased brightness. The shell layer also caused an increase in the particle size. Moreover, the modified yellow particles exhibited apparent electrophoretic response, indicating improved electrophoretic properties. The core-shell structure significantly enhanced the performance of organic yellow pigment PY181, making this method a practical modification approach. This method provides a novel way of improving the electrophoretic performance of color pigment particles that are challenging to directly connect with an ionic liquid, leading to the improved electrophoretic mobility of pigment particles. It is suitable for the surface modification of various pigment particles.

17.
Materials (Basel) ; 16(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241293

RESUMEN

Heterostructures based on layered materials are considered next-generation photocatalysts due to their unique mechanical, physical, and chemical properties. In this work, we conducted a systematic first-principles study on the structure, stability, and electronic properties of a 2D monolayer WSe2/Cs4AgBiBr8 heterostructure. We found that the heterostructure is not only a type-II heterostructure with a high optical absorption coefficient, but also shows better optoelectronic properties, changing from an indirect bandgap semiconductor (about 1.70 eV) to a direct bandgap semiconductor (about 1.23 eV) by introducing an appropriate Se vacancy. Moreover, we investigated the stability of the heterostructure with Se atomic vacancy in different positions and found that the heterostructure was more stable when the Se vacancy is near the vertical direction of the upper Br atoms from the 2D double perovskite layer. The insightful understanding of WSe2/Cs4AgBiBr8 heterostructure and the defect engineering will offer useful strategies to design superior layered photodetectors.

18.
Opt Express ; 31(4): 6241-6251, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823885

RESUMEN

The circle Olver beams (COBs) generated by modulation on the basis of a new type of Olver beam are presented numerically and experimentally. The zeroth order COB is the circle Airy beam. We demonstrate auto-focusing of the COBs with both inward and outward accelerations, where the odd order COBs display auto-defocusing while the even order COBs (ECOBs) tend to focus more abruptly. We also explore the effect of the decay factor and the scaling factor on the beams' focusing properties, such as the initial energy distribution, the focusing position, the focusing intensity and the focusing depth, by using the parity mode. In addition, we verify the self-healing property of the COBs. Finally, we set up an experimental platform to implement particle capture and manipulation with the ECOBs. Our results offer practical applications for particle manipulation, laser processing, etc.

19.
J Colloid Interface Sci ; 634: 509-520, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542979

RESUMEN

Acetaminophen plays a key role in first-line Covid-19 cure as a supportive therapy of fever and pain. However, overdose of acetaminophen may give rise to severe adverse events such as acute liver failure in individual. In this work, 3D-hierarchical mesoporous carbon nanosheet (hMCNS) microspheres with superior properties were fabricated using simple and quick strategy and applied for sensitive quantification of acetaminophen in pharmaceutical formulation and rat plasmas after administration. The hMCNS microspheres are prepared via chemical etching of zinc oxide (ZnO) nanoparticles from a zinc-gallic acid precursor composite (Zn-GA) synthesized by high-temperature anaerobic pyrolysis. The obtained hMCNS could enhance analytes accessibility and accelerate proton transfer in the interface, hence increasing the electrochemical performance. Under optimized experimental conditions, the proposed electrochemical sensor achieves a detection limit of 3.5 nM for acetaminophen. The prepared electrochemical sensor has been successfully applied for quantification of acetaminophen in pharmaceutical formulations and the rat plasma samples before and after administration. Meanwhile, this sensor is compared with high-performance liquid chromatography (HPLC) as a reference technology, showing an excellent accuracy. Such an electrochemical sensor has great potential and economic benefits for applications in the fields of pharmaceutical assay and therapeutic drug monitoring (TDM).


Asunto(s)
Acetaminofén , COVID-19 , Animales , Ratas , Acetaminofén/análisis , Carbono/química , Preparaciones Farmacéuticas , Zinc , Técnicas Electroquímicas/métodos , Electrodos
20.
Biomed Opt Express ; 13(10): 5571-5573, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36425638

RESUMEN

This feature issue of Biomedical Optics Express presents a cross-section of interesting and emerging work of relevance to the use of biological cells or microorganisms in optics and photonics. The technologies demonstrated here aim to address challenges to meeting the optical imaging, sensing, manipulating and therapy needs in a natural or even endogenous manner. This collection of 15 papers includes the novel results on designs of optical systems or photonic devices, image-assisted diagnosis and treatment, and manipulation or sensing methods, with applications for both ex vivo and in vivo use. These works portray the opportunities for exploring the field crossing biology and photonics in which a natural element can be functionalized for biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...