Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; : 1-7, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702891

RESUMEN

Arsenic (As) is one of the most important water pollutant of global concern due to its extreme hazard. In the present study, B. subtilis synthesized iron oxide nanoparticles (Fe3O4 NPs) were used for mitigation of harmful metalloid As from the aqueous solution. Initially, the arsenic removal efficiency was tested in a batch culture experiment across various concentrations (5, 10 and 15 ppm) of B. subtilis synthesized Fe3O4 NPs at different pH, time interval and agitation speed. Optimal removal efficiency of As by using B. subtilis synthesized Fe3O4 NPs was observed at pH 7, after 80 min, and with agitation at 200 rpm. Additionally, hydroponic culture experiment was designed to assess B. subtilis synthesized Fe3O4 NPs efficiency in removal of As from As-contaminated water used to irrigate rice plants. Results revealed that B. subtilis synthesized Fe3O4 NPs effectively removed As from the contiminated water and reduced its uptake by the different parts of rice plants (root, shoot and leaf). Furthermore, these B. subtilis synthesized Fe3O4 NPs also reduced the bioaccumulation and enhanced plant tolerance to As, suggesting their potential in mitigating heavy metal toxicity, especially As and promoting plant growth. Thus, this study proposes B. subtilis synthesized Fe3O4 NPs as nano-adsorbents in reducing arsenic toxicity in rice plants.

2.
Sci Rep ; 14(1): 1618, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238395

RESUMEN

The elimination of hazardous industrial pollutants from aqueous solutions is an emerging area of scientific research and a worldwide problem. An efficient catalyst, Ag-CuO was synthesized for the degradation of methylene blue, the chemical sensing of ammonia. A simple novel synthetic method was reported in which new plant material Capparis decidua was used for the reduction and stabilization of the synthesized nanocatalyst. A Varying amount of Ag was doped into CuO to optimize the best catalyst that met the required objectives. Through this, the Ag-CuO nanocomposite was characterized by XRD, SEM, HR-TEM, EDX, and FTIR techniques. The mechanism of increased catalytic activity with Ag doping involves the formation of charge sink and suppression of drop back probability of charge from conduction to valance band. Herein, 2.7 mol % Ag-CuO exhibited better catalytic activities and it was used through subsequent catalytic experiments. The experimental conditions such as pH, catalyst dose, analyte initial concentration, and contact time were optimized. The as-synthesized nanocomposite demonstrates an excellent degradation efficacy of MB which is 97% at pH 9. More interestingly, the as-synthesized catalyst was successfully applied for the chemical sensing of ammonia even at very low concentrations. The lower limit of detection (LLOD) also called analytic sensitivity was calculated for ammonia sensing and found to be 1.37 ppm.

3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37895933

RESUMEN

Copper(II) complexes with a general formula [Cu2(3,4-F2C6H3CH2COO)4(L)2], where L = 2-methylpyridine (1) and 3-methylpyridine (2), are reported here. The FTIR spectra of the complexes confirmed the bridging bidentate coordination mode of the carboxylate ligand. The low (475 and 449 cm-1) and strong (727 & 725 cm-1) intensity bands in the FTIR spectra, due to Cu-N stretches and pyridyl ring vibrations, confirmed coordination of the 2-/3-methyl pyridine co-ligands in complexes 1 and 2, respectively. A binuclear paddlewheel structural arrangement with a square pyramidal geometry was confirmed for copper atoms in the complexes via single-crystal X-ray analysis. The DPPH, •OH radical, and α-amylase enzyme inhibition assays showed higher activities for the complexes than for the free ligand acid. The binding constant (Kb = 1.32 × 105 for 1 and 5.33 × 105 for 2) calculated via UV-VIS absorption measurements and docking scores (-6.59 for 1 and -7.43 for 2) calculated via molecular docking showed higher SS-DNA binding potential for 2 compared to 1. Viscosity measurement also reflected higher DNA binding ability for 2 than 1. Both complexes 1 and 2 (docking scores of -7.43 and -6.95, respectively) were found to be more active inhibitors than the free ligand acid (docking score of -5.5159) against the target α-amylase protein. This in silico study has shown that the herein reported compounds follow the rules of drug-likeness and exhibit good potential for bioavailability.

4.
Toxics ; 10(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36287898

RESUMEN

Nanoparticle (NP) application is most effective in decreasing metalloid toxicity. The current study aimed to evaluate the effect of Bacillus subtiles synthesized iron oxide nanoparticles (Fe3O4 NPs) against arsenic (As) stress on rice (Oryza sativa L.) seedlings. Different concentrations of As (5, 10 and 15 ppm) and Bacillus subtilis synthesized Fe3O4 NPs solution (5, 10 and 15 ppm) alone and in combination were applied to rice seedlings. The results showed that As at 15 ppm significantly decreased the growth of rice, which was increased by the low level of As. Results indicated that B. subtilis synthesized Fe3O4 NP-treated plants showed maximum chlorophyll land protein content as compared with arsenic treatment alone. The antioxidant enzymes such as SOD, POD, CAT, MDA and APX and stress modulators (Glycine betain and proline) also showed decreased content in plants as compared with As stress. Subsequently, Bacillus subtilis synthesized Fe3O4 NPs reduced the stress associated parameters due to limited passage of arsenic inside the plant. Furthermore, reduction in H2O2 and MDA content confirmed that the addition of Bacillus subtilis synthesized Fe3O4 NPs under As stress protected rice seedlings against arsenic toxicity, hence enhanced growth was notice and it had beneficial effects on the plant. Results highlighted that Fe3O4 NPs protect rice seedlings against arsenic stress by reducing As accumulation, act as a nano adsorbent and restricting arsenic uptake in rice plants. Hence, our study confirms the significance of Bacillus subtilis synthesized Fe3O4 NPs in alleviating As toxicity in rice plants.

5.
Front Pharmacol ; 13: 864336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450047

RESUMEN

Four new carboxylates complexes with general formula R2SnL2 and R3SnL, where R = n-butyl (1, 3), methyl (2, 4) and L = 4-Chlorophenoxyacetate, were synthesized in significant yields. FT-IR analysis revealed a chelating (1 and 2) and a bridging bidentate (3 and 4) coordination modes for the carboxylate ligand in solid state which was further confirmed by the single crystal X-ray analysis of complex 4. The NMR data (1H, 13C and 119Sn) revealed a higher coordination number around the tin center in R2SnL2 (1 and 2) compared to R3SnL (3 and 4). A close matching was observed between the experimental and calculated structures (obtained at B3LYP/6-31G* + LANL2DZ basis set). Quantum chemical analysis indicates that the carboxylate moiety has the major contribution in the formation of filled and unfilled orbitals as well as in ligand to ligand intramolecular charge transfer during the electronic transitions. The cytotoxicity data of the screened compounds evaluated against lung cancer cell line (A549) and normal lung fibroblast cell line (MRC-5) revealed that 1, 3 and 4 have shown dose dependent cytotoxic effects while HL and 2 have shown steady and low cytotoxic activities. The antibacterial activity of complexes 1-4 is higher than that of HL. Molecular docking study showed an intercalation binding mode for complex 3 with DNA (docking score = -3.6005) involving four polar interactions. Complex 3 docking with tubulin (PDB ID 1SA0) with colchicine as a target protein resulted in three polar interactions (docking score -5.2957). Further, the docking analysis of the HL and 1-4 has shown an adequate interactions with the coronavirus SARS-CoV-2 spike protein, nucleocapsid protein and human angiotensin converting enzyme (ACE2).

6.
J Mol Struct ; 1253: 132308, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-34980930

RESUMEN

Copper(II) carboxylate complexes [Cu2(OOCR)4L2] (1) and [Cu2(OOCR`)4OCO(R`)CuL2]n (2), where L = 2-methyl pyridine, R = 2-chlorophenyl acetate and R` = 2-fluorophenyl acetate were synthesized and characterized by FT-IR spectroscopy and single crystal X-ray analysis. Complex 1 exhibits the typical paddlewheel array of a dinuclear copper(II) complex with carboxylate ligands. In complex 2, this scaffold is further extended into a polymeric arrangement based on alternate paddlewheel and square planar moieties with distinct coordination spheres. The complexes showed better 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities and have been found to be more potent antileishmanial agents than their corresponding free ligand acid species. UV-Vis absorption titrations revealed good DNA binding abilities {Kb = 9.8 × 104 M-1 (1) and 9.9 × 104 M-1 (2)} implying partial intercalation of the complexes into DNA base pairs along with groove binding. The complexes displayed in vitro cytotoxic activity against malignant glioma U-87 (MG U87) cell lines. Computational docking studies further support complex-DNA binding by intercalation. Molecular docking investigations revealed probable interactions of the complexes with spike protein, the nucleocapsid protein of SARS-CoV-2 and with the angiotensin converting enzyme of human cells.

7.
Toxics ; 9(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396194

RESUMEN

Arsenic (As) contamination has emerged as a serious public health concern worldwide because of its accumulation and mobility through the food chain. Therefore, the current study was planned to check the effect of Bacillus subtilis-synthesized iron oxide nano particles (Fe3O4 NP) on rice (Oryza Sativa L.) growth against arsenic stress (0, 5, 10 and 15 ppm). Iron oxide nanoparticles were extracellular synthesized from Bacillus subtilis with a desired shape and size. The formations of nanoparticles were differentiated through UV-Visible Spectroscopy, FTIR, XRD and SEM. The UV-Visible spectroscopy of Bacillus subtilis-synthesized nanoparticles showed that the iron oxide surface plasmon band occurs at 268 nm. FTIR results revealed that different functional groups (aldehyde, alkene, alcohol and phenol) were present on the surface of nanoparticles. The SEM image showed that particles were spherical in shape with an average size of 67.28 nm. Arsenic toxicity was observed in seed germination and young seedling stage. The arsenic application significantly reduced seed germination (35%), root and shoots length (1.25 and 2.00 cm), shoot/root ratio (0.289), fresh root and shoots weight (0.205 and 0.260 g), dry root and shoots weight (6.55 and 6.75 g), dry matter percentage of shoot (12.67) and root (14.91) as compared to control. Bacillus subtilis-synthesized Fe3O4 NPs treatments (5 ppm) remarkably increased the germination (65%), root and shoot length (2 and 3.45 cm), shoot/root ratio (1.24) fresh root and shoot weight (0.335 and 0.275 mg), dry root and shoot weight (11.75 and 10.6 mg) and dry matter percentage of shoot (10.40) and root (18.37). Results revealed that the application of Fe3O4 NPs alleviated the arsenic stress and enhanced the plant growth. This study suggests that Bacillus subtilus-synthesized iron oxide nanoparticles can be used as nano-adsorbents in reducing arsenic toxicity in rice plants.

8.
Pak J Pharm Sci ; 31(4): 1399-1405, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30033426

RESUMEN

The total phenolic content, flavonoid content, in vitro xanthine oxidase (XOD) inhibitory activity and antioxidant activity (AA) of Eucommia ulmoides Oliver leaf extracts were investigated. The AA investigations included 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ß-carotene/linoleic acid bleaching assay and oxygen radical absorbance capacity (ORAC) test. The ethyl acetate fraction (EE) showed the highest AA and xanthine oxidase inhibitory activity. Whilst the lowest 50% inhibition (IC50) value of this fraction for DPPH free radical scavenging was 0.045mg/mL, its highest ORAC value was 10.57 µmol TE/mg. The highest inhibition rate against linoleic acid oxidation observed was 69.41%, and the lowest IC50 value for xanthine oxidase activity inhibition was 2.47mg/mL. These results show that E. ulmoides leaf extract is a promising source of natural antioxidants because it contains high contents of bioactive compounds, including chlorogenic acid, rutin, hyperin and astragalin, as detected by high-performance liquid chromatography coupled to HPLC-DAD-ESI-MS.


Asunto(s)
Antiinfecciosos/síntesis química , Inhibidores Enzimáticos/síntesis química , Compuestos Orgánicos de Estaño/síntesis química , Ureasa/antagonistas & inhibidores , Antiinfecciosos/química , Antiinfecciosos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Compuestos Orgánicos de Estaño/química , Compuestos Orgánicos de Estaño/farmacología , Bases de Schiff/química
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 368-377, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-28954251

RESUMEN

New zinc(II) carboxylate complexes [Zn(3-F-C6H4CH2COO)2]n (1), [Zn3(3-F-C6H4CH2COO)6(Phen)2] (2) and [Zn3(3-F-C6H4CH2COO)6(bipy)2] (3) were synthesized and characterized by atomic absorption, single crystal structural analysis and IR studies. Complex 1 crystallizes as a coordination polymer constituting a web of µ-η1,η1 carboxylate bridged tetrahedral zinc centers. Complexes 2 and 3 comprise trinuclear zinc centers with two terminal fivefold coordinated slightly distorted square-pyramidal and central sixfold coordinated octahedral zinc centers. The complexes were also assessed for their DNA binding ability by UV/-Vis spectroscopy and their behavior rationalized theoretically by molecular docking studies. A DNA binding study has shown groove binding interactions with the complexes.


Asunto(s)
Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntesis química , ADN/química , Simulación del Acoplamiento Molecular , Zinc/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Conformación Molecular , Espectroscopía Infrarroja por Transformada de Fourier
10.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 6): o871, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23795050

RESUMEN

In the title compound, C15H15NO2, the dihedral angle between the aromatic rings is 5.86 (6)°, and an intra-molecular N-H⋯O hydrogen bond generates an S(6) motif, which helps to stabilize the enamine-keto tautomer. An intra-molecular O-H⋯O hydrogen bond also occurs. In the crystal, inversion dimers linked by pairs of O-H⋯O hydrogen bonds generate R 2 (2)(10) loops. A C-H⋯O inter-action links the dimers into [010] chains and aromatic π-π stacking [centroid-centroid separation = 3.6131 (9) Å] also occurs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...