Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 28(23): 34516-34529, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182919

RESUMEN

Point source atom interferometry (PSI) uses the velocity distribution in a cold atom cloud to simultaneously measure one axis of acceleration and two axes of rotation from the spatial distribution of interferometer phase in an expanded cloud of atoms. Previously, the interferometer phase has been found from the phase, orientation, and period of the resulting spatial atomic interference fringe images. For practical applications in inertial sensing and precision measurement, it is important to be able to measure a wide range of system rotation rates, corresponding to interferograms with far less than one full interference fringe to very many fringes. Interferogram analysis techniques based on image processing used previously for PSI are challenging to implement for low rotation rates that generate less than one full interference fringe across the cloud. We introduce a new experimental method that is closely related to optical phase-shifting interferometry that is effective in extracting rotation values from signals consisting of fractional fringes as well as many fringes without prior knowledge of the rotation rate. The method finds the interferometer phase for each pixel in the image from four interferograms, each with a controlled Raman laser phase shift, to reconstruct the underlying atomic interferometer phase map without image processing.

2.
Phys Rev Lett ; 110(26): 263004, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23848871

RESUMEN

Relaxation of the Larmor magnetic moment by spin-exchange collisions has been shown to diminish for high alkali densities, resulting from the linear part of the collisional interaction. In contrast, we demonstrate both experimentally and theoretically the elimination of spin-exchange relaxation of high magnetic moments (birefringence) in alkali vapor. This elimination originates from the nonlinear part of the spin-exchange interaction, as a scattering process of the Larmor magnetic moment. We find counterintuitively that the threshold magnetic field is the same as in the Larmor case, despite the fact that the precession frequency is twice as large.

3.
Opt Lett ; 38(8): 1203-5, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595431

RESUMEN

The close relation between the processes of paraxial diffraction and coherent diffusion is reflected in the similarity between their shape-preserving solutions, notably the Gaussian modes. Differences between these solutions enter only for high-order modes. Here we experimentally study the behavior of shape-preserving high-order modes of coherent diffusion, known as "elegant" modes, and contrast them with the nonshape-preserving evolution of the corresponding "standard" modes of optical diffraction. Diffusion of the light field is obtained by mapping it onto the atomic coherence field of a diffusing vapor in a storage-of-light setup. The growth of the elegant mode fits well the theoretical expectations.

4.
Opt Express ; 18(18): 18832-8, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20940776

RESUMEN

We experimentally demonstrate an optical pumping technique to pump a dilute rubidium vapor into the m(F) = 0 ground states. The technique utilizes selection rules that forbid the excitation of the m(F) = 0 states by linearly-polarized light. A substantial increase in the transparency contrast of the coherent-population-trapping resonance used for frequency standards is demonstrated.

5.
Opt Express ; 17(19): 16776-82, 2009 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-19770894

RESUMEN

A new magnetometry method based on electromagnetic induced transparency (EIT) with maximally polarized states is demonstrated. An EIT hyperfine resonance, comprising the m(F)=F state (end-state), is observed at a non-zero angle between the laser beam and the magnetic field. The method takes advantage of the process of end-state pumping, a well-known rival of simpler EIT magnetometry schemes, and therefore benefits at a high laser power. An experimental demonstration and a numerical analysis of the magnetometry method are presented. The analysis points on a clear sensitivity advantage of the end-state EIT magnetometer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA