Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37764217

RESUMEN

Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new influenza A strains. Efficient control of infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A combination of several such antigens, including the conserved region of the second subunit of the hemagglutinin (HA2), the extracellular domain of the M2 protein (M2e), and epitopes of nucleoprotein (NP), which together can elicit an antibody- and cell-mediated immune response, would be preferred for vaccine development. In this study, we obtained recombinant virus-like particles formed by an artificial self-assembling peptide (SAP) carrying two epitopes from NP, tandem copies of M2e and HA2 peptides, along with a T helper Pan DR-binding epitope (PADRE). Fusion proteins expressed in Escherichia coli self-assembled in vitro into spherical particles with a size of 15-35 nm. Immunization of mice with these particles induced strong humoral immune response against M2e and the entire virus, and lead to the formation of cytokine-secreting antigen-specific CD4+ and CD8+ effector memory T cells. Immunization provided high protection of mice against the lethal challenge with the influenza A virus. Our results show that SAP-based nanoparticles carrying conserved peptides from M2, HA, and NP proteins of the influenza A virus, as well as T helper epitope PADRE, can be used for the development of universal flu vaccines.


Asunto(s)
Gripe Humana , Nucleoproteínas , Animales , Ratones , Humanos , Nucleoproteínas/genética , Hemaglutininas , Linfocitos T , Epítopos , Escherichia coli/genética , Inmunidad
2.
Plants (Basel) ; 12(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299207

RESUMEN

Despite advances in vaccine development, influenza remains a persistent global health threat and the search for a broad-spectrum recombinant vaccine against influenza continues. The extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is highly conserved and can be used to develop a universal vaccine. M2e is a poor immunogen by itself, but it becomes highly immunogenic when linked to an appropriate carrier. Here, we report the transient expression of a recombinant protein comprising four tandem copies of M2e fused to an artificial self-assembling peptide (SAP) in plants. The hybrid protein was efficiently expressed in Nicotiana benthamiana using the self-replicating potato virus X-based vector pEff. The protein was purified using metal affinity chromatography under denaturing conditions. The hybrid protein was capable of self-assembly in vitro into spherical particles 15-30 nm in size. The subcutaneous immunization of mice with M2e-carrying nanoparticles induced high levels of M2e-specific IgG antibodies in serum and mucosal secretions. Immunization provided mice with protection against a lethal influenza A virus challenge. SAP-based nanoparticles displaying M2e peptides can be further used to develop a recombinant "universal" vaccine against influenza A produced in plants.

3.
Viruses ; 15(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36851694

RESUMEN

Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by ß-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the ß-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while ß-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of ß-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Vacunas de Productos Inactivados , COVID-19/prevención & control , Sueroterapia para COVID-19 , Vacunas contra la COVID-19 , Pandemias , Propiolactona/farmacología , SARS-CoV-2 , Formaldehído
4.
Vaccines (Basel) ; 10(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36560509

RESUMEN

Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines. Recombinant proteins incorporating conserved influenza A virus peptides are one of the platforms for the development of cross-protective influenza vaccines. We constructed a recombinant protein Flg-HA2-2-4M2ehs, in which the extracellular domain of the M2 protein (M2e) and the sequence (aa76-130) of the second subunit of HA (HA2) were used as target antigens. In this study, we investigated the ability of the Flg-HA2-2-4M2ehs protein to activate innate immunity and stimulate the formation of T-cell response in mice of different genetic lines after intranasal immunization. Our studies showed that the Flg-HA2-2-4M2ehs protein was manifested in an increase in the relative content of neutrophils, monocytes, and interstitial macrophages, against the backdrop of a decrease in the level of dendritic cells and increased expression in the CD86 marker. In the lungs of BALB/c mice, immunization with the Flg-HA2-2-4M2ehs protein induced the formation of antigen-specific CD4+ and CD8+ effector memory T cells, producing TNF-α. In mice C57Bl/6, the formation of antigen-specific effector CD8+ T cells, predominantly producing IFN-γ+, was demonstrated. The data obtained showed the formation of CD8+ and CD4+ effector memory T cells expressing the CD107a.

5.
Nanomedicine ; 39: 102463, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583058

RESUMEN

The extracellular domain of the M2 protein (M2e) and conserved region of the second subunit of the hemagglutinin (HA2) could be used for the development of broad-spectrum vaccines against influenza A. Here we obtained and characterized recombinant mosaic proteins containing tandem copies of M2e and HA2 fused to an artificial self-assembling peptide (SAP). The inclusion of SAP peptides in the fusion proteins enabled their self-assembly in vitro into spherical particles with a size of 30-50 nm. Intranasal immunization of mice with these particles without additional adjuvants induced strong humoral immune response against M2e and the whole virus. Particles carrying both M2e and HA2 induced antigen-specific multifunctional CD4+ effector memory T cells. Immunization provided high protection of mice against the lethal challenge with different subtypes of influenza A virus. The obtained self-assembling nanoparticles can be used to develop a universal influenza vaccine.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Nanopartículas , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Epítopos , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Péptidos , Vacunas Sintéticas , Proteínas de la Matriz Viral/genética
6.
PLoS One ; 13(8): e0201429, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138320

RESUMEN

BACKGROUND: Influenza infection could be more effectively controlled if a multi-purpose vaccine with the ability to induce responses against most, or all, influenza A subtypes could be generated. Conserved viral proteins are a promising basis for the creation of a broadly protective vaccine. In the present study, the immunogenicity and protective properties of three recombinant proteins (vaccine candidates), comprising conserved viral proteins fused with bacterial flagellin, were compared. METHODS: Balb/c mice were immunized intranasally with recombinant proteins comprising either one viral protein (the ectodomain of the M2 protein, 'M2e') or two viral proteins (M2e and the hemagglutinin second subunit 'HA2' epitope) genetically fused with flagellin. Further, two different consensus variants of HA2 were used. Therefore, three experimental positives were used in addition to the negative control (Flg-his). The mucosal, humoral, and T-cell immune responses to these constructs were evaluated. RESULT: We have demonstrated that insertion of the HA2 consensus polypeptide (aa 76-130), derived from either the first (HA2-1) or second (HA2-2) virus phylogenetic group, into the recombinant Flg4M2e protein significantly enhanced its immunogenicity and protective properties. Intranasal administration of the vaccine candidates (Flg-HA2-2-4M2e or Flg-HA2-1-4M2e) induced considerable mucosal and systemic responses directed at both the M2e-protein and, in general, the influenza A virus. However, the immune response elicited by the Flg-HA2-1-4M2e protein was weaker than the one generated by Flg-HA2-2-4M2e. These recombinant proteins containing both viral peptides provide complete protection from lethal challenge with various influenza viruses: A/H3N2; A/H2N2; and A/H5N1. CONCLUSION: This study demonstrates that the intranasal administration of Flg-HA2-2-4M2e recombinant protein induces a strong immune response which provides broad protection against various influenza viruses. This construct is therefore a strong candidate for development as a universal vaccine.


Asunto(s)
Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Péptidos/inmunología , Animales , Epítopos/farmacología , Femenino , Proteínas Filagrina , Glicoproteínas Hemaglutininas del Virus de la Influenza/farmacología , Vacunas contra la Influenza/farmacología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Péptidos/farmacología
7.
J Biomed Sci ; 25(1): 33, 2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-29631629

RESUMEN

BACKGROUND: Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new, potentially pandemic, influenza strains. Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A current trend in the design of universal flu vaccines is the construction of recombinant proteins based on combinations of various conserved epitopes of viral proteins (M1, M2, HA2, NP). In this study, we compared the immunogenicity and protective action of two recombinant proteins which feature different designs and which target different antigens. RESULTS: Balb/c mice were immunized subcutaneously with Flg-HA2-2-4M2ehs or FlgSh-HA2-2-4M2ehs; these constructs differ in the location of hemagglutinin's HA2-2(76-130) insertion into flagellin (FliC). The humoral and T-cell immune responses to these constructs were evaluated. The simultaneous expression of different M2e and HA2-2(76-130) in recombinant protein form induces a strong M2e-specific IgG response and CD4+/ CD8+ T-cell response. The insertion of HA2-2(76-130) into the hypervariable domain of flagellin greatly increases antigen-specific T-cell response, as evidenced by the formation of multi-cytokine-secreting CD4+, CD8+ T-cells, Tem, and Tcm. Both proteins provide full protection from lethal challenge with A/H3N2 and A/H7N9. CONCLUSION: Our results show that highly conserved M2e and HA2-2(76-130) can be used as important targets for the development of universal flu vaccines. The location of the HA2-2(76-130) peptide's insertion into the hypervariable domain of flagellin had a significant effect on the T-cell response to influenza antigens, as seen by forming of multi-cytokine-secreting CD4+ and CD8+ T-cells.


Asunto(s)
Epítopos/inmunología , Flagelina/inmunología , Inmunogenicidad Vacunal/inmunología , Virus de la Influenza A/inmunología , Proteínas Recombinantes de Fusión/inmunología , Animales , Epítopos/genética , Femenino , Flagelina/genética , Ratones , Ratones Endogámicos BALB C , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...