Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Inform ; 43(1): e202300262, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37833243

RESUMEN

The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Bioensayo , Descubrimiento de Drogas
2.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175788

RESUMEN

Over the past three years, significant progress has been made in the development of novel promising drug candidates against COVID-19. However, SARS-CoV-2 mutations resulting in the emergence of new viral strains that can be resistant to the drugs used currently in the clinic necessitate the development of novel potent and broad therapeutic agents targeting different vulnerable spots of the viral proteins. In this study, two deep learning generative models were developed and used in combination with molecular modeling tools for de novo design of small molecule compounds that can inhibit the catalytic activity of SARS-CoV-2 main protease (Mpro), an enzyme critically important for mediating viral replication and transcription. As a result, the seven best scoring compounds that exhibited low values of binding free energy comparable with those calculated for two potent inhibitors of Mpro, via the same computational protocol, were selected as the most probable inhibitors of the enzyme catalytic site. In light of the data obtained, the identified compounds are assumed to present promising scaffolds for the development of new potent and broad-spectrum drugs inhibiting SARS-CoV-2 Mpro, an attractive therapeutic target for anti-COVID-19 agents.


Asunto(s)
Inteligencia Artificial , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...