Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 29(22): 3825-3837.e3, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679937

RESUMEN

Separation of duplicated spindle poles is the first step in forming the mitotic spindle. Kinesin-5 crosslinks and slides anti-parallel microtubules (MTs), but it is unclear how these two activities contribute to the first steps in spindle formation. In this study, we report that in monopolar spindles, the duplicated spindle poles snap apart in a fast and irreversible step that produces a nascent bipolar spindle. Using mutations in Kinesin-5 that inhibit microtubule sliding, we show that the fast, irreversible pole separation is primarily driven by microtubule crosslinking. Electron tomography revealed microtubule pairs in monopolar spindles have short overlaps that intersect at high angles and are unsuited for ensemble Kinesin-5 sliding. However, maximal extension of a subset of anti-parallel microtubule pairs approaches the length of nascent bipolar spindles and is consistent with a Kinesin-5 crosslinking-driven transition. Nonetheless, microtubule sliding by Kinesin-5 contributes to stabilizing the nascent spindle and setting its stereotyped equilibrium length.


Asunto(s)
Cinesinas/genética , Cinesinas/metabolismo , Huso Acromático/fisiología , Ciclo Celular/genética , Microtúbulos/metabolismo , Microtúbulos/fisiología , Mitosis/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Polos del Huso/genética , Polos del Huso/fisiología
2.
Sci Rep ; 8(1): 2513, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391486

RESUMEN

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 7(1): 11398, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900268

RESUMEN

γ-Tubulin has a well-established role in nucleating the assembly of microtubules, yet how phosphorylation regulates its activity remains unclear. Here, we use a time-resolved, fitness-based SGA approach to compare two γ-tubulin alleles, and find that the genetic interaction profile of γtub-Y362E is enriched in spindle positioning and cell polarity genes relative to that of γtub-Y445D, which is enriched in genes involved in spindle assembly and stability. In γtub-Y362E cells, we find a defect in spindle alignment and an increase in the number of astral microtubules at both spindle poles. Our results suggest that the γtub-Y362E allele is a separation-of-function mutation that reveals a role for γ-tubulin phospho-regulation in spindle alignment. We propose that phosphorylation of the evolutionarily conserved Y362 residue of budding yeast γ-tubulin contributes to regulating the number of astral microtubules associated with spindle poles, and promoting efficient pre-anaphase spindle alignment.


Asunto(s)
Microtúbulos/metabolismo , Cuerpos Polares del Huso/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Alelos , Línea Celular , Polaridad Celular , Dineínas/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Transducción de Señal
5.
Methods Mol Biol ; 1342: 237-57, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26254928

RESUMEN

Cdk1 is the essential cyclin-dependent kinase in the budding yeast Saccharomyces cerevisiae. Cdk1 orchestrates cell cycle control by phosphorylating target proteins with extraordinary temporal and spatial specificity by complexing with one of the nine cyclin regulatory subunits. The identification of the cyclin required for targeting Cdk1 to a substrate can help to place the regulation of that protein at a specific time point during the cell cycle and reveal information needed to elucidate the biological significance of the regulation. Here, we describe a combination of strategies to identify interaction partners of Cdk1, and associate these complexes to the appropriate cyclins using a cell-based protein-fragment complementation assay. Validation of the specific reliance of the OyCD interaction between Cdk1 and budding yeast γ-tubulin on the Clb3 cyclin, relative to the mitotic Clb2 cyclin, was performed by an in vitro kinase assay using the γ-tubulin complex as a substrate.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Citosina Desaminasa/metabolismo , Pruebas de Enzimas/métodos , Saccharomyces cerevisiae/enzimología , Tubulina (Proteína)/metabolismo , Animales , Proteína Quinasa CDC2/aislamiento & purificación , Eliminación de Gen , Unión Proteica , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera
6.
Genetics ; 185(3): 1111-28, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20439772

RESUMEN

The Saccharomyces cerevisiae transcription factor Aft1 is activated in iron-deficient cells to induce the expression of iron regulon genes, which coordinate the increase of iron uptake and remodel cellular metabolism to survive low-iron conditions. In addition, Aft1 has been implicated in numerous cellular processes including cell-cycle progression and chromosome stability; however, it is unclear if all cellular effects of Aft1 are mediated through iron homeostasis. To further investigate the cellular processes affected by Aft1, we identified >70 deletion mutants that are sensitive to perturbations in AFT1 levels using genome-wide synthetic lethal and synthetic dosage lethal screens. Our genetic network reveals that Aft1 affects a diverse range of cellular processes, including the RIM101 pH pathway, cell-wall stability, DNA damage, protein transport, chromosome stability, and mitochondrial function. Surprisingly, only a subset of mutants identified are sensitive to extracellular iron fluctuations or display genetic interactions with mutants of iron regulon genes AFT2 or FET3. We demonstrate that Aft1 works in parallel with the RIM101 pH pathway and the role of Aft1 in DNA damage repair is mediated by iron. In contrast, through both directed studies and microarray transcriptional profiling, we show that the role of Aft1 in chromosome maintenance and benomyl resistance is independent of its iron regulatory role, potentially through a nontranscriptional mechanism.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hierro/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Oligoelementos/farmacología , Factores de Transcripción/genética , Biomarcadores/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Inmunoprecipitación de Cromatina , Inestabilidad Cromosómica , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Genes Letales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...